Metamath Proof Explorer


Theorem cbvrmodavw2

Description: Change bound variable and quantifier domain in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrmodavw2.1 φ x = y ψ χ
cbvrmodavw2.2 φ x = y A = B
Assertion cbvrmodavw2 φ * x A ψ * y B χ

Proof

Step Hyp Ref Expression
1 cbvrmodavw2.1 φ x = y ψ χ
2 cbvrmodavw2.2 φ x = y A = B
3 simpr φ x = y x = y
4 3 2 eleq12d φ x = y x A y B
5 4 1 anbi12d φ x = y x A ψ y B χ
6 5 cbvmodavw φ * x x A ψ * y y B χ
7 df-rmo * x A ψ * x x A ψ
8 df-rmo * y B χ * y y B χ
9 6 7 8 3bitr4g φ * x A ψ * y B χ