Metamath Proof Explorer


Theorem cbvrmodavw2

Description: Change bound variable and quantifier domain in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrmodavw2.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
cbvrmodavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbvrmodavw2
|- ( ph -> ( E* x e. A ps <-> E* y e. B ch ) )

Proof

Step Hyp Ref Expression
1 cbvrmodavw2.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 cbvrmodavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 simpr
 |-  ( ( ph /\ x = y ) -> x = y )
4 3 2 eleq12d
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) )
5 4 1 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. B /\ ch ) ) )
6 5 cbvmodavw
 |-  ( ph -> ( E* x ( x e. A /\ ps ) <-> E* y ( y e. B /\ ch ) ) )
7 df-rmo
 |-  ( E* x e. A ps <-> E* x ( x e. A /\ ps ) )
8 df-rmo
 |-  ( E* y e. B ch <-> E* y ( y e. B /\ ch ) )
9 6 7 8 3bitr4g
 |-  ( ph -> ( E* x e. A ps <-> E* y e. B ch ) )