Metamath Proof Explorer


Theorem cbvriotadavw2

Description: Change bound variable and domain in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvriotadavw2.1 φ x = y ψ χ
cbvriotadavw2.2 φ x = y A = B
Assertion cbvriotadavw2 φ ι x A | ψ = ι y B | χ

Proof

Step Hyp Ref Expression
1 cbvriotadavw2.1 φ x = y ψ χ
2 cbvriotadavw2.2 φ x = y A = B
3 eleq1w x = y x A y A
4 3 adantl φ x = y x A y A
5 2 eleq2d φ x = y y A y B
6 4 5 bitrd φ x = y x A y B
7 6 1 anbi12d φ x = y x A ψ y B χ
8 7 cbviotadavw φ ι x | x A ψ = ι y | y B χ
9 df-riota ι x A | ψ = ι x | x A ψ
10 df-riota ι y B | χ = ι y | y B χ
11 8 9 10 3eqtr4g φ ι x A | ψ = ι y B | χ