Metamath Proof Explorer


Theorem cbvmpodavw2

Description: Change bound variable and domains in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmpodavw2.1 φ x = z y = w E = F
cbvmpodavw2.2 φ x = z y = w C = D
cbvmpodavw2.3 φ x = z y = w A = B
Assertion cbvmpodavw2 φ x A , y C E = z B , w D F

Proof

Step Hyp Ref Expression
1 cbvmpodavw2.1 φ x = z y = w E = F
2 cbvmpodavw2.2 φ x = z y = w C = D
3 cbvmpodavw2.3 φ x = z y = w A = B
4 simplr φ x = z y = w x = z
5 4 3 eleq12d φ x = z y = w x A z B
6 simpr φ x = z y = w y = w
7 6 2 eleq12d φ x = z y = w y C w D
8 5 7 anbi12d φ x = z y = w x A y C z B w D
9 1 eqeq2d φ x = z y = w t = E t = F
10 8 9 anbi12d φ x = z y = w x A y C t = E z B w D t = F
11 10 cbvoprab12davw φ x y t | x A y C t = E = z w t | z B w D t = F
12 df-mpo x A , y C E = x y t | x A y C t = E
13 df-mpo z B , w D F = z w t | z B w D t = F
14 11 12 13 3eqtr4g φ x A , y C E = z B , w D F