Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpodavw2.1 |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> E = F ) |
2 |
|
cbvmpodavw2.2 |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> C = D ) |
3 |
|
cbvmpodavw2.3 |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> A = B ) |
4 |
|
simplr |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> x = z ) |
5 |
4 3
|
eleq12d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( x e. A <-> z e. B ) ) |
6 |
|
simpr |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> y = w ) |
7 |
6 2
|
eleq12d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( y e. C <-> w e. D ) ) |
8 |
5 7
|
anbi12d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( ( x e. A /\ y e. C ) <-> ( z e. B /\ w e. D ) ) ) |
9 |
1
|
eqeq2d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( t = E <-> t = F ) ) |
10 |
8 9
|
anbi12d |
|- ( ( ( ph /\ x = z ) /\ y = w ) -> ( ( ( x e. A /\ y e. C ) /\ t = E ) <-> ( ( z e. B /\ w e. D ) /\ t = F ) ) ) |
11 |
10
|
cbvoprab12davw |
|- ( ph -> { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } = { <. <. z , w >. , t >. | ( ( z e. B /\ w e. D ) /\ t = F ) } ) |
12 |
|
df-mpo |
|- ( x e. A , y e. C |-> E ) = { <. <. x , y >. , t >. | ( ( x e. A /\ y e. C ) /\ t = E ) } |
13 |
|
df-mpo |
|- ( z e. B , w e. D |-> F ) = { <. <. z , w >. , t >. | ( ( z e. B /\ w e. D ) /\ t = F ) } |
14 |
11 12 13
|
3eqtr4g |
|- ( ph -> ( x e. A , y e. C |-> E ) = ( z e. B , w e. D |-> F ) ) |