Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpodavw2.1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → 𝐸 = 𝐹 ) |
2 |
|
cbvmpodavw2.2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐷 ) |
3 |
|
cbvmpodavw2.3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → 𝐴 = 𝐵 ) |
4 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 ) |
5 |
4 3
|
eleq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
6 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → 𝑦 = 𝑤 ) |
7 |
6 2
|
eleq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷 ) ) |
8 |
5 7
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) ) |
9 |
1
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( 𝑡 = 𝐸 ↔ 𝑡 = 𝐹 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑧 ) ∧ 𝑦 = 𝑤 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) ) ) |
11 |
10
|
cbvoprab12davw |
⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) } = { 〈 〈 𝑧 , 𝑤 〉 , 𝑡 〉 ∣ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) } ) |
12 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) } |
13 |
|
df-mpo |
⊢ ( 𝑧 ∈ 𝐵 , 𝑤 ∈ 𝐷 ↦ 𝐹 ) = { 〈 〈 𝑧 , 𝑤 〉 , 𝑡 〉 ∣ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) } |
14 |
11 12 13
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = ( 𝑧 ∈ 𝐵 , 𝑤 ∈ 𝐷 ↦ 𝐹 ) ) |