Metamath Proof Explorer


Theorem cbvoprab12davw

Description: Change the first and second bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab12davw.1
|- ( ( ( ph /\ x = w ) /\ y = v ) -> ( ps <-> ch ) )
Assertion cbvoprab12davw
|- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. w , v >. , z >. | ch } )

Proof

Step Hyp Ref Expression
1 cbvoprab12davw.1
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> ( ps <-> ch ) )
2 simplr
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> x = w )
3 simpr
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> y = v )
4 2 3 opeq12d
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> <. x , y >. = <. w , v >. )
5 4 opeq1d
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> <. <. x , y >. , z >. = <. <. w , v >. , z >. )
6 5 eqeq2d
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> ( t = <. <. x , y >. , z >. <-> t = <. <. w , v >. , z >. ) )
7 6 1 anbi12d
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> ( ( t = <. <. x , y >. , z >. /\ ps ) <-> ( t = <. <. w , v >. , z >. /\ ch ) ) )
8 7 exbidv
 |-  ( ( ( ph /\ x = w ) /\ y = v ) -> ( E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. z ( t = <. <. w , v >. , z >. /\ ch ) ) )
9 8 cbvexdvaw
 |-  ( ( ph /\ x = w ) -> ( E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. v E. z ( t = <. <. w , v >. , z >. /\ ch ) ) )
10 9 cbvexdvaw
 |-  ( ph -> ( E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. w E. v E. z ( t = <. <. w , v >. , z >. /\ ch ) ) )
11 10 abbidv
 |-  ( ph -> { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } = { t | E. w E. v E. z ( t = <. <. w , v >. , z >. /\ ch ) } )
12 df-oprab
 |-  { <. <. x , y >. , z >. | ps } = { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) }
13 df-oprab
 |-  { <. <. w , v >. , z >. | ch } = { t | E. w E. v E. z ( t = <. <. w , v >. , z >. /\ ch ) }
14 11 12 13 3eqtr4g
 |-  ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. w , v >. , z >. | ch } )