Metamath Proof Explorer


Theorem cbvoprab23davw

Description: Change the second and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab23davw.1
|- ( ( ( ph /\ y = w ) /\ z = v ) -> ( ps <-> ch ) )
Assertion cbvoprab23davw
|- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , w >. , v >. | ch } )

Proof

Step Hyp Ref Expression
1 cbvoprab23davw.1
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> ( ps <-> ch ) )
2 eqidd
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> x = x )
3 simplr
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> y = w )
4 2 3 opeq12d
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> <. x , y >. = <. x , w >. )
5 simpr
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> z = v )
6 4 5 opeq12d
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> <. <. x , y >. , z >. = <. <. x , w >. , v >. )
7 6 eqeq2d
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> ( t = <. <. x , y >. , z >. <-> t = <. <. x , w >. , v >. ) )
8 7 1 anbi12d
 |-  ( ( ( ph /\ y = w ) /\ z = v ) -> ( ( t = <. <. x , y >. , z >. /\ ps ) <-> ( t = <. <. x , w >. , v >. /\ ch ) ) )
9 8 cbvexdvaw
 |-  ( ( ph /\ y = w ) -> ( E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. v ( t = <. <. x , w >. , v >. /\ ch ) ) )
10 9 cbvexdvaw
 |-  ( ph -> ( E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) ) )
11 10 exbidv
 |-  ( ph -> ( E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) ) )
12 11 abbidv
 |-  ( ph -> { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } = { t | E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) } )
13 df-oprab
 |-  { <. <. x , y >. , z >. | ps } = { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) }
14 df-oprab
 |-  { <. <. x , w >. , v >. | ch } = { t | E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) }
15 12 13 14 3eqtr4g
 |-  ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , w >. , v >. | ch } )