Step |
Hyp |
Ref |
Expression |
1 |
|
cbvoprab23davw.1 |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> ( ps <-> ch ) ) |
2 |
|
eqidd |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> x = x ) |
3 |
|
simplr |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> y = w ) |
4 |
2 3
|
opeq12d |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> <. x , y >. = <. x , w >. ) |
5 |
|
simpr |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> z = v ) |
6 |
4 5
|
opeq12d |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> <. <. x , y >. , z >. = <. <. x , w >. , v >. ) |
7 |
6
|
eqeq2d |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> ( t = <. <. x , y >. , z >. <-> t = <. <. x , w >. , v >. ) ) |
8 |
7 1
|
anbi12d |
|- ( ( ( ph /\ y = w ) /\ z = v ) -> ( ( t = <. <. x , y >. , z >. /\ ps ) <-> ( t = <. <. x , w >. , v >. /\ ch ) ) ) |
9 |
8
|
cbvexdvaw |
|- ( ( ph /\ y = w ) -> ( E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. v ( t = <. <. x , w >. , v >. /\ ch ) ) ) |
10 |
9
|
cbvexdvaw |
|- ( ph -> ( E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) ) ) |
11 |
10
|
exbidv |
|- ( ph -> ( E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) ) ) |
12 |
11
|
abbidv |
|- ( ph -> { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } = { t | E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) } ) |
13 |
|
df-oprab |
|- { <. <. x , y >. , z >. | ps } = { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } |
14 |
|
df-oprab |
|- { <. <. x , w >. , v >. | ch } = { t | E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) } |
15 |
12 13 14
|
3eqtr4g |
|- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , w >. , v >. | ch } ) |