Metamath Proof Explorer


Theorem cbvoprab23davw

Description: Change the second and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab23davw.1 ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
Assertion cbvoprab23davw ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvoprab23davw.1 ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
2 eqidd ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → 𝑥 = 𝑥 )
3 simplr ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → 𝑦 = 𝑤 )
4 2 3 opeq12d ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑤 ⟩ )
5 simpr ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → 𝑧 = 𝑣 )
6 4 5 opeq12d ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ )
7 6 eqeq2d ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ↔ 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ) )
8 7 1 anbi12d ( ( ( 𝜑𝑦 = 𝑤 ) ∧ 𝑧 = 𝑣 ) → ( ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
9 8 cbvexdvaw ( ( 𝜑𝑦 = 𝑤 ) → ( ∃ 𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑣 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
10 9 cbvexdvaw ( 𝜑 → ( ∃ 𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤𝑣 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
11 10 exbidv ( 𝜑 → ( ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑥𝑤𝑣 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
12 11 abbidv ( 𝜑 → { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑥𝑤𝑣 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) } )
13 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) }
14 df-oprab { ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑥𝑤𝑣 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) }
15 12 13 14 3eqtr4g ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑤 ⟩ , 𝑣 ⟩ ∣ 𝜒 } )