Metamath Proof Explorer


Theorem cbvoprab23davw

Description: Change the second and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab23davw.1 φ y = w z = v ψ χ
Assertion cbvoprab23davw φ x y z | ψ = x w v | χ

Proof

Step Hyp Ref Expression
1 cbvoprab23davw.1 φ y = w z = v ψ χ
2 eqidd φ y = w z = v x = x
3 simplr φ y = w z = v y = w
4 2 3 opeq12d φ y = w z = v x y = x w
5 simpr φ y = w z = v z = v
6 4 5 opeq12d φ y = w z = v x y z = x w v
7 6 eqeq2d φ y = w z = v t = x y z t = x w v
8 7 1 anbi12d φ y = w z = v t = x y z ψ t = x w v χ
9 8 cbvexdvaw φ y = w z t = x y z ψ v t = x w v χ
10 9 cbvexdvaw φ y z t = x y z ψ w v t = x w v χ
11 10 exbidv φ x y z t = x y z ψ x w v t = x w v χ
12 11 abbidv φ t | x y z t = x y z ψ = t | x w v t = x w v χ
13 df-oprab x y z | ψ = t | x y z t = x y z ψ
14 df-oprab x w v | χ = t | x w v t = x w v χ
15 12 13 14 3eqtr4g φ x y z | ψ = x w v | χ