Metamath Proof Explorer


Theorem cbvoprab13davw

Description: Change the first and third bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab13davw.1 φ x = w z = v ψ χ
Assertion cbvoprab13davw φ x y z | ψ = w y v | χ

Proof

Step Hyp Ref Expression
1 cbvoprab13davw.1 φ x = w z = v ψ χ
2 simplr φ x = w z = v x = w
3 eqidd φ x = w z = v y = y
4 2 3 opeq12d φ x = w z = v x y = w y
5 simpr φ x = w z = v z = v
6 4 5 opeq12d φ x = w z = v x y z = w y v
7 6 eqeq2d φ x = w z = v t = x y z t = w y v
8 7 1 anbi12d φ x = w z = v t = x y z ψ t = w y v χ
9 8 cbvexdvaw φ x = w z t = x y z ψ v t = w y v χ
10 9 exbidv φ x = w y z t = x y z ψ y v t = w y v χ
11 10 cbvexdvaw φ x y z t = x y z ψ w y v t = w y v χ
12 11 abbidv φ t | x y z t = x y z ψ = t | w y v t = w y v χ
13 df-oprab x y z | ψ = t | x y z t = x y z ψ
14 df-oprab w y v | χ = t | w y v t = w y v χ
15 12 13 14 3eqtr4g φ x y z | ψ = w y v | χ