Metamath Proof Explorer


Theorem cbvixpdavw

Description: Change bound variable in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvixpdavw.1 φ x = y B = C
Assertion cbvixpdavw φ x A B = y A C

Proof

Step Hyp Ref Expression
1 cbvixpdavw.1 φ x = y B = C
2 eleq1w x = y x A y A
3 2 adantl φ x = y x A y A
4 3 cbvabdavw φ x | x A = y | y A
5 4 fneq2d φ t Fn x | x A t Fn y | y A
6 simpr φ x = y x = y
7 6 fveq2d φ x = y t x = t y
8 7 1 eleq12d φ x = y t x B t y C
9 8 cbvraldva φ x A t x B y A t y C
10 5 9 anbi12d φ t Fn x | x A x A t x B t Fn y | y A y A t y C
11 10 abbidv φ t | t Fn x | x A x A t x B = t | t Fn y | y A y A t y C
12 df-ixp x A B = t | t Fn x | x A x A t x B
13 df-ixp y A C = t | t Fn y | y A y A t y C
14 11 12 13 3eqtr4g φ x A B = y A C