Metamath Proof Explorer


Theorem cbvixpdavw

Description: Change bound variable in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvixpdavw.1
|- ( ( ph /\ x = y ) -> B = C )
Assertion cbvixpdavw
|- ( ph -> X_ x e. A B = X_ y e. A C )

Proof

Step Hyp Ref Expression
1 cbvixpdavw.1
 |-  ( ( ph /\ x = y ) -> B = C )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
4 3 cbvabdavw
 |-  ( ph -> { x | x e. A } = { y | y e. A } )
5 4 fneq2d
 |-  ( ph -> ( t Fn { x | x e. A } <-> t Fn { y | y e. A } ) )
6 simpr
 |-  ( ( ph /\ x = y ) -> x = y )
7 6 fveq2d
 |-  ( ( ph /\ x = y ) -> ( t ` x ) = ( t ` y ) )
8 7 1 eleq12d
 |-  ( ( ph /\ x = y ) -> ( ( t ` x ) e. B <-> ( t ` y ) e. C ) )
9 8 cbvraldva
 |-  ( ph -> ( A. x e. A ( t ` x ) e. B <-> A. y e. A ( t ` y ) e. C ) )
10 5 9 anbi12d
 |-  ( ph -> ( ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. B ) <-> ( t Fn { y | y e. A } /\ A. y e. A ( t ` y ) e. C ) ) )
11 10 abbidv
 |-  ( ph -> { t | ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. B ) } = { t | ( t Fn { y | y e. A } /\ A. y e. A ( t ` y ) e. C ) } )
12 df-ixp
 |-  X_ x e. A B = { t | ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. B ) }
13 df-ixp
 |-  X_ y e. A C = { t | ( t Fn { y | y e. A } /\ A. y e. A ( t ` y ) e. C ) }
14 11 12 13 3eqtr4g
 |-  ( ph -> X_ x e. A B = X_ y e. A C )