Metamath Proof Explorer


Theorem cbvixpdavw

Description: Change bound variable in an indexed Cartesian product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvixpdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
Assertion cbvixpdavw ( 𝜑X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 cbvixpdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 adantl ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐴 ) )
4 3 cbvabdavw ( 𝜑 → { 𝑥𝑥𝐴 } = { 𝑦𝑦𝐴 } )
5 4 fneq2d ( 𝜑 → ( 𝑡 Fn { 𝑥𝑥𝐴 } ↔ 𝑡 Fn { 𝑦𝑦𝐴 } ) )
6 simpr ( ( 𝜑𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
7 6 fveq2d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝑥 ) = ( 𝑡𝑦 ) )
8 7 1 eleq12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑡𝑥 ) ∈ 𝐵 ↔ ( 𝑡𝑦 ) ∈ 𝐶 ) )
9 8 cbvraldva ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦𝐴 ( 𝑡𝑦 ) ∈ 𝐶 ) )
10 5 9 anbi12d ( 𝜑 → ( ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐵 ) ↔ ( 𝑡 Fn { 𝑦𝑦𝐴 } ∧ ∀ 𝑦𝐴 ( 𝑡𝑦 ) ∈ 𝐶 ) ) )
11 10 abbidv ( 𝜑 → { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐵 ) } = { 𝑡 ∣ ( 𝑡 Fn { 𝑦𝑦𝐴 } ∧ ∀ 𝑦𝐴 ( 𝑡𝑦 ) ∈ 𝐶 ) } )
12 df-ixp X 𝑥𝐴 𝐵 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐵 ) }
13 df-ixp X 𝑦𝐴 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑦𝑦𝐴 } ∧ ∀ 𝑦𝐴 ( 𝑡𝑦 ) ∈ 𝐶 ) }
14 11 12 13 3eqtr4g ( 𝜑X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶 )