Step |
Hyp |
Ref |
Expression |
1 |
|
cbvixpdavw.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) |
2 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
4 |
3
|
cbvabdavw |
⊢ ( 𝜑 → { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑦 ∣ 𝑦 ∈ 𝐴 } ) |
5 |
4
|
fneq2d |
⊢ ( 𝜑 → ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐴 } ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑡 ‘ 𝑥 ) = ( 𝑡 ‘ 𝑦 ) ) |
8 |
7 1
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑡 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑡 ‘ 𝑦 ) ∈ 𝐶 ) ) |
9 |
8
|
cbvraldva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑡 ‘ 𝑦 ) ∈ 𝐶 ) ) |
10 |
5 9
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐴 } ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑡 ‘ 𝑦 ) ∈ 𝐶 ) ) ) |
11 |
10
|
abbidv |
⊢ ( 𝜑 → { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑡 ∣ ( 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐴 } ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑡 ‘ 𝑦 ) ∈ 𝐶 ) } ) |
12 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐵 ) } |
13 |
|
df-ixp |
⊢ X 𝑦 ∈ 𝐴 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑦 ∣ 𝑦 ∈ 𝐴 } ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑡 ‘ 𝑦 ) ∈ 𝐶 ) } |
14 |
11 12 13
|
3eqtr4g |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 = X 𝑦 ∈ 𝐴 𝐶 ) |