Metamath Proof Explorer


Theorem cbvriotadavw2

Description: Change bound variable and domain in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvriotadavw2.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
cbvriotadavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbvriotadavw2
|- ( ph -> ( iota_ x e. A ps ) = ( iota_ y e. B ch ) )

Proof

Step Hyp Ref Expression
1 cbvriotadavw2.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 cbvriotadavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
4 3 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
5 2 eleq2d
 |-  ( ( ph /\ x = y ) -> ( y e. A <-> y e. B ) )
6 4 5 bitrd
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) )
7 6 1 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. B /\ ch ) ) )
8 7 cbviotadavw
 |-  ( ph -> ( iota x ( x e. A /\ ps ) ) = ( iota y ( y e. B /\ ch ) ) )
9 df-riota
 |-  ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) )
10 df-riota
 |-  ( iota_ y e. B ch ) = ( iota y ( y e. B /\ ch ) )
11 8 9 10 3eqtr4g
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ y e. B ch ) )