Metamath Proof Explorer


Theorem cbviindavw2

Description: Change bound variable and domain in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviindavw2.1
|- ( ( ph /\ x = y ) -> C = D )
cbviindavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbviindavw2
|- ( ph -> |^|_ x e. A C = |^|_ y e. B D )

Proof

Step Hyp Ref Expression
1 cbviindavw2.1
 |-  ( ( ph /\ x = y ) -> C = D )
2 cbviindavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 1 eleq2d
 |-  ( ( ph /\ x = y ) -> ( t e. C <-> t e. D ) )
4 3 2 cbvraldva2
 |-  ( ph -> ( A. x e. A t e. C <-> A. y e. B t e. D ) )
5 4 abbidv
 |-  ( ph -> { t | A. x e. A t e. C } = { t | A. y e. B t e. D } )
6 df-iin
 |-  |^|_ x e. A C = { t | A. x e. A t e. C }
7 df-iin
 |-  |^|_ y e. B D = { t | A. y e. B t e. D }
8 5 6 7 3eqtr4g
 |-  ( ph -> |^|_ x e. A C = |^|_ y e. B D )