Metamath Proof Explorer


Theorem cbviundavw2

Description: Change bound variable and domain in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviundavw2.1
|- ( ( ph /\ x = y ) -> C = D )
cbviundavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbviundavw2
|- ( ph -> U_ x e. A C = U_ y e. B D )

Proof

Step Hyp Ref Expression
1 cbviundavw2.1
 |-  ( ( ph /\ x = y ) -> C = D )
2 cbviundavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 1 eleq2d
 |-  ( ( ph /\ x = y ) -> ( t e. C <-> t e. D ) )
4 3 2 cbvrexdva2
 |-  ( ph -> ( E. x e. A t e. C <-> E. y e. B t e. D ) )
5 4 abbidv
 |-  ( ph -> { t | E. x e. A t e. C } = { t | E. y e. B t e. D } )
6 df-iun
 |-  U_ x e. A C = { t | E. x e. A t e. C }
7 df-iun
 |-  U_ y e. B D = { t | E. y e. B t e. D }
8 5 6 7 3eqtr4g
 |-  ( ph -> U_ x e. A C = U_ y e. B D )