Description: Change bound variable and domain in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbviundavw2.1 | |- ( ( ph /\ x = y ) -> C = D ) |
|
cbviundavw2.2 | |- ( ( ph /\ x = y ) -> A = B ) |
||
Assertion | cbviundavw2 | |- ( ph -> U_ x e. A C = U_ y e. B D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviundavw2.1 | |- ( ( ph /\ x = y ) -> C = D ) |
|
2 | cbviundavw2.2 | |- ( ( ph /\ x = y ) -> A = B ) |
|
3 | 1 | eleq2d | |- ( ( ph /\ x = y ) -> ( t e. C <-> t e. D ) ) |
4 | 3 2 | cbvrexdva2 | |- ( ph -> ( E. x e. A t e. C <-> E. y e. B t e. D ) ) |
5 | 4 | abbidv | |- ( ph -> { t | E. x e. A t e. C } = { t | E. y e. B t e. D } ) |
6 | df-iun | |- U_ x e. A C = { t | E. x e. A t e. C } |
|
7 | df-iun | |- U_ y e. B D = { t | E. y e. B t e. D } |
|
8 | 5 6 7 | 3eqtr4g | |- ( ph -> U_ x e. A C = U_ y e. B D ) |