Description: Change bound variable and domain in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviundavw2.1 | |- ( ( ph /\ x = y ) -> C = D ) |
|
| cbviundavw2.2 | |- ( ( ph /\ x = y ) -> A = B ) |
||
| Assertion | cbviundavw2 | |- ( ph -> U_ x e. A C = U_ y e. B D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviundavw2.1 | |- ( ( ph /\ x = y ) -> C = D ) |
|
| 2 | cbviundavw2.2 | |- ( ( ph /\ x = y ) -> A = B ) |
|
| 3 | 1 | eleq2d | |- ( ( ph /\ x = y ) -> ( t e. C <-> t e. D ) ) |
| 4 | 3 2 | cbvrexdva2 | |- ( ph -> ( E. x e. A t e. C <-> E. y e. B t e. D ) ) |
| 5 | 4 | abbidv | |- ( ph -> { t | E. x e. A t e. C } = { t | E. y e. B t e. D } ) |
| 6 | df-iun | |- U_ x e. A C = { t | E. x e. A t e. C } |
|
| 7 | df-iun | |- U_ y e. B D = { t | E. y e. B t e. D } |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( ph -> U_ x e. A C = U_ y e. B D ) |