Metamath Proof Explorer


Theorem cbviundavw2

Description: Change bound variable and domain in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviundavw2.1 φ x = y C = D
cbviundavw2.2 φ x = y A = B
Assertion cbviundavw2 φ x A C = y B D

Proof

Step Hyp Ref Expression
1 cbviundavw2.1 φ x = y C = D
2 cbviundavw2.2 φ x = y A = B
3 1 eleq2d φ x = y t C t D
4 3 2 cbvrexdva2 φ x A t C y B t D
5 4 abbidv φ t | x A t C = t | y B t D
6 df-iun x A C = t | x A t C
7 df-iun y B D = t | y B t D
8 5 6 7 3eqtr4g φ x A C = y B D