Metamath Proof Explorer


Theorem cbvrabdavw2

Description: Change bound variable and domain in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrabdavw2.1 φ x = y ψ χ
cbvrabdavw2.2 φ x = y A = B
Assertion cbvrabdavw2 φ x A | ψ = y B | χ

Proof

Step Hyp Ref Expression
1 cbvrabdavw2.1 φ x = y ψ χ
2 cbvrabdavw2.2 φ x = y A = B
3 eleq1w x = y x A y A
4 3 adantl φ x = y x A y A
5 2 eleq2d φ x = y y A y B
6 4 5 bitrd φ x = y x A y B
7 6 1 anbi12d φ x = y x A ψ y B χ
8 7 cbvabdavw φ x | x A ψ = y | y B χ
9 df-rab x A | ψ = x | x A ψ
10 df-rab y B | χ = y | y B χ
11 8 9 10 3eqtr4g φ x A | ψ = y B | χ