Metamath Proof Explorer


Theorem cbvreudavw2

Description: Change bound variable and quantifier domain in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvreudavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
cbvreudavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
Assertion cbvreudavw2 ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvreudavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 cbvreudavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
3 simpr ( ( 𝜑𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
4 3 2 eleq12d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐵 ) )
5 4 1 anbi12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐵𝜒 ) ) )
6 5 cbveudavw ( 𝜑 → ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑦 ( 𝑦𝐵𝜒 ) ) )
7 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
8 df-reu ( ∃! 𝑦𝐵 𝜒 ↔ ∃! 𝑦 ( 𝑦𝐵𝜒 ) )
9 6 7 8 3bitr4g ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑦𝐵 𝜒 ) )