Description: Change bound variable and quantifier domain in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvreudavw2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
cbvreudavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) | ||
Assertion | cbvreudavw2 | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvreudavw2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | cbvreudavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) | |
3 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) | |
4 | 3 2 | eleq12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
5 | 4 1 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
6 | 5 | cbveudavw | ⊢ ( 𝜑 → ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
7 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
8 | df-reu | ⊢ ( ∃! 𝑦 ∈ 𝐵 𝜒 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) | |
9 | 6 7 8 | 3bitr4g | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ∈ 𝐵 𝜒 ) ) |