| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvreuvw2.1 |
|- ( x = y -> A = B ) |
| 2 |
|
cbvreuvw2.2 |
|- ( x = y -> ( ph <-> ps ) ) |
| 3 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
| 4 |
1
|
eleq2d |
|- ( x = y -> ( y e. A <-> y e. B ) ) |
| 5 |
3 4
|
bitrd |
|- ( x = y -> ( x e. A <-> y e. B ) ) |
| 6 |
5 2
|
anbi12d |
|- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) ) |
| 7 |
6
|
cbveuvw |
|- ( E! x ( x e. A /\ ph ) <-> E! y ( y e. B /\ ps ) ) |
| 8 |
|
df-reu |
|- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
| 9 |
|
df-reu |
|- ( E! y e. B ps <-> E! y ( y e. B /\ ps ) ) |
| 10 |
7 8 9
|
3bitr4i |
|- ( E! x e. A ph <-> E! y e. B ps ) |