Metamath Proof Explorer


Theorem cbvreuvw2

Description: Change bound variable and domain in the restricted existential uniqueness quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvreuvw2.1
|- ( x = y -> A = B )
cbvreuvw2.2
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvreuvw2
|- ( E! x e. A ph <-> E! y e. B ps )

Proof

Step Hyp Ref Expression
1 cbvreuvw2.1
 |-  ( x = y -> A = B )
2 cbvreuvw2.2
 |-  ( x = y -> ( ph <-> ps ) )
3 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
4 1 eleq2d
 |-  ( x = y -> ( y e. A <-> y e. B ) )
5 3 4 bitrd
 |-  ( x = y -> ( x e. A <-> y e. B ) )
6 5 2 anbi12d
 |-  ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) )
7 6 cbveuvw
 |-  ( E! x ( x e. A /\ ph ) <-> E! y ( y e. B /\ ps ) )
8 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
9 df-reu
 |-  ( E! y e. B ps <-> E! y ( y e. B /\ ps ) )
10 7 8 9 3bitr4i
 |-  ( E! x e. A ph <-> E! y e. B ps )