Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme24.b |
|- B = ( Base ` K ) |
2 |
|
cdleme24.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme24.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme24.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme24.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme24.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme24.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme24.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme24.n |
|- N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ s ) ./\ W ) ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
cdleme25a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> E. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ N e. B ) ) |
11 |
|
eqid |
|- ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
12 |
|
eqid |
|- ( ( P .\/ Q ) ./\ ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) |
13 |
1 2 3 4 5 6 7 8 9 11 12
|
cdleme24 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> A. s e. A A. t e. A ( ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) -> N = ( ( P .\/ Q ) ./\ ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) ) ) |
14 |
|
breq1 |
|- ( s = t -> ( s .<_ W <-> t .<_ W ) ) |
15 |
14
|
notbid |
|- ( s = t -> ( -. s .<_ W <-> -. t .<_ W ) ) |
16 |
|
breq1 |
|- ( s = t -> ( s .<_ ( P .\/ Q ) <-> t .<_ ( P .\/ Q ) ) ) |
17 |
16
|
notbid |
|- ( s = t -> ( -. s .<_ ( P .\/ Q ) <-> -. t .<_ ( P .\/ Q ) ) ) |
18 |
15 17
|
anbi12d |
|- ( s = t -> ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) <-> ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) ) |
19 |
|
oveq1 |
|- ( s = t -> ( s .\/ U ) = ( t .\/ U ) ) |
20 |
|
oveq2 |
|- ( s = t -> ( P .\/ s ) = ( P .\/ t ) ) |
21 |
20
|
oveq1d |
|- ( s = t -> ( ( P .\/ s ) ./\ W ) = ( ( P .\/ t ) ./\ W ) ) |
22 |
21
|
oveq2d |
|- ( s = t -> ( Q .\/ ( ( P .\/ s ) ./\ W ) ) = ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
23 |
19 22
|
oveq12d |
|- ( s = t -> ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) |
24 |
8 23
|
eqtrid |
|- ( s = t -> F = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) |
25 |
|
oveq2 |
|- ( s = t -> ( R .\/ s ) = ( R .\/ t ) ) |
26 |
25
|
oveq1d |
|- ( s = t -> ( ( R .\/ s ) ./\ W ) = ( ( R .\/ t ) ./\ W ) ) |
27 |
24 26
|
oveq12d |
|- ( s = t -> ( F .\/ ( ( R .\/ s ) ./\ W ) ) = ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) |
28 |
27
|
oveq2d |
|- ( s = t -> ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ s ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) ) |
29 |
9 28
|
eqtrid |
|- ( s = t -> N = ( ( P .\/ Q ) ./\ ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) ) |
30 |
18 29
|
reusv3 |
|- ( E. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ N e. B ) -> ( A. s e. A A. t e. A ( ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) -> N = ( ( P .\/ Q ) ./\ ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) ) <-> E. u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) ) |
31 |
30
|
biimpd |
|- ( E. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ N e. B ) -> ( A. s e. A A. t e. A ( ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) ) -> N = ( ( P .\/ Q ) ./\ ( ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) .\/ ( ( R .\/ t ) ./\ W ) ) ) ) -> E. u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) ) |
32 |
10 13 31
|
sylc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> E. u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) |