Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31se.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ T ) ./\ W ) ) ) |
2 |
|
cdleme31se.y |
|- Y = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ T ) ./\ W ) ) ) |
3 |
|
nfcvd |
|- ( R e. A -> F/_ s ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ T ) ./\ W ) ) ) ) |
4 |
|
oveq1 |
|- ( s = R -> ( s .\/ T ) = ( R .\/ T ) ) |
5 |
4
|
oveq1d |
|- ( s = R -> ( ( s .\/ T ) ./\ W ) = ( ( R .\/ T ) ./\ W ) ) |
6 |
5
|
oveq2d |
|- ( s = R -> ( D .\/ ( ( s .\/ T ) ./\ W ) ) = ( D .\/ ( ( R .\/ T ) ./\ W ) ) ) |
7 |
6
|
oveq2d |
|- ( s = R -> ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ T ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ T ) ./\ W ) ) ) ) |
8 |
3 7
|
csbiegf |
|- ( R e. A -> [_ R / s ]_ ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ T ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ T ) ./\ W ) ) ) ) |
9 |
1
|
csbeq2i |
|- [_ R / s ]_ E = [_ R / s ]_ ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ T ) ./\ W ) ) ) |
10 |
8 9 2
|
3eqtr4g |
|- ( R e. A -> [_ R / s ]_ E = Y ) |