Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme35.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme35.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme35.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme35.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme35.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme35.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme35.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
8 |
|
cdleme35.g |
|- G = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
9 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> R =/= S ) |
10 |
|
simpl1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) /\ F = G ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
11 |
|
simpl2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) /\ F = G ) -> ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) |
12 |
|
simpl31 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) /\ F = G ) -> -. R .<_ ( P .\/ Q ) ) |
13 |
|
simpl32 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) /\ F = G ) -> -. S .<_ ( P .\/ Q ) ) |
14 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) /\ F = G ) -> F = G ) |
15 |
1 2 3 4 5 6 7 8
|
cdleme35h |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ F = G ) ) -> R = S ) |
16 |
10 11 12 13 14 15
|
syl113anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) /\ F = G ) -> R = S ) |
17 |
16
|
ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> ( F = G -> R = S ) ) |
18 |
17
|
necon3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> ( R =/= S -> F =/= G ) ) |
19 |
9 18
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> F =/= G ) |