Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme32s.b |
|- B = ( Base ` K ) |
2 |
|
cdleme32s.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme32s.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme32s.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme32s.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme32s.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme32s.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme32s.d |
|- D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme32s.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , D ) |
10 |
|
eqid |
|- ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
11 |
|
eqid |
|- ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
12 |
2 3 4 5 6 7 10 11
|
cdleme35h2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) =/= ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
13 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> R e. A ) |
14 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> -. R .<_ ( P .\/ Q ) ) |
15 |
8 9 10
|
cdleme31sn2 |
|- ( ( R e. A /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
16 |
13 14 15
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ R / s ]_ N = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
17 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> S e. A ) |
18 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> -. S .<_ ( P .\/ Q ) ) |
19 |
8 9 11
|
cdleme31sn2 |
|- ( ( S e. A /\ -. S .<_ ( P .\/ Q ) ) -> [_ S / s ]_ N = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ S / s ]_ N = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
21 |
12 16 20
|
3netr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ R / s ]_ N =/= [_ S / s ]_ N ) |