Metamath Proof Explorer


Theorem cdleme35sn2aw

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one outside of P .\/ Q line case; compare cdleme32sn2awN . TODO: FIX COMMENT. (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses cdleme32s.b 𝐵 = ( Base ‘ 𝐾 )
cdleme32s.l = ( le ‘ 𝐾 )
cdleme32s.j = ( join ‘ 𝐾 )
cdleme32s.m = ( meet ‘ 𝐾 )
cdleme32s.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme32s.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme32s.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme32s.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme32s.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
Assertion cdleme35sn2aw ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 𝑆 / 𝑠 𝑁 )

Proof

Step Hyp Ref Expression
1 cdleme32s.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme32s.l = ( le ‘ 𝐾 )
3 cdleme32s.j = ( join ‘ 𝐾 )
4 cdleme32s.m = ( meet ‘ 𝐾 )
5 cdleme32s.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme32s.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme32s.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme32s.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme32s.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
10 eqid ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
11 eqid ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
12 2 3 4 5 6 7 10 11 cdleme35h2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) ≠ ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) )
13 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅𝐴 )
14 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ¬ 𝑅 ( 𝑃 𝑄 ) )
15 8 9 10 cdleme31sn2 ( ( 𝑅𝐴 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
16 13 14 15 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
17 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑆𝐴 )
18 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
19 8 9 11 cdleme31sn2 ( ( 𝑆𝐴 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝑆 / 𝑠 𝑁 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) )
20 17 18 19 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑆 / 𝑠 𝑁 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) )
21 12 16 20 3netr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 𝑆 / 𝑠 𝑁 )