Metamath Proof Explorer


Theorem cdleme35h2

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one outside of P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙=K
cdleme35.j ˙=joinK
cdleme35.m ˙=meetK
cdleme35.a A=AtomsK
cdleme35.h H=LHypK
cdleme35.u U=P˙Q˙W
cdleme35.f F=R˙U˙Q˙P˙R˙W
cdleme35.g G=S˙U˙Q˙P˙S˙W
Assertion cdleme35h2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSFG

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙=K
2 cdleme35.j ˙=joinK
3 cdleme35.m ˙=meetK
4 cdleme35.a A=AtomsK
5 cdleme35.h H=LHypK
6 cdleme35.u U=P˙Q˙W
7 cdleme35.f F=R˙U˙Q˙P˙R˙W
8 cdleme35.g G=S˙U˙Q˙P˙S˙W
9 simp33 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSRS
10 simpl1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSF=GKHLWHPA¬P˙WQA¬Q˙W
11 simpl2 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSF=GPQRA¬R˙WSA¬S˙W
12 simpl31 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSF=G¬R˙P˙Q
13 simpl32 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSF=G¬S˙P˙Q
14 simpr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSF=GF=G
15 1 2 3 4 5 6 7 8 cdleme35h KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GR=S
16 10 11 12 13 14 15 syl113anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSF=GR=S
17 16 ex KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSF=GR=S
18 17 necon3d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSRSFG
19 9 18 mpd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QRSFG