Metamath Proof Explorer


Theorem cdleme35h

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one outside of P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 11-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙=K
cdleme35.j ˙=joinK
cdleme35.m ˙=meetK
cdleme35.a A=AtomsK
cdleme35.h H=LHypK
cdleme35.u U=P˙Q˙W
cdleme35.f F=R˙U˙Q˙P˙R˙W
cdleme35.g G=S˙U˙Q˙P˙S˙W
Assertion cdleme35h KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GR=S

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙=K
2 cdleme35.j ˙=joinK
3 cdleme35.m ˙=meetK
4 cdleme35.a A=AtomsK
5 cdleme35.h H=LHypK
6 cdleme35.u U=P˙Q˙W
7 cdleme35.f F=R˙U˙Q˙P˙R˙W
8 cdleme35.g G=S˙U˙Q˙P˙S˙W
9 oveq1 F=GF˙U=G˙U
10 oveq2 F=GQ˙F=Q˙G
11 10 oveq1d F=GQ˙F˙W=Q˙G˙W
12 11 oveq2d F=GP˙Q˙F˙W=P˙Q˙G˙W
13 9 12 oveq12d F=GF˙U˙P˙Q˙F˙W=G˙U˙P˙Q˙G˙W
14 13 3ad2ant3 ¬R˙P˙Q¬S˙P˙QF=GF˙U˙P˙Q˙F˙W=G˙U˙P˙Q˙G˙W
15 14 3ad2ant3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GF˙U˙P˙Q˙F˙W=G˙U˙P˙Q˙G˙W
16 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GKHLWHPA¬P˙WQA¬Q˙W
17 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GPQ
18 simp22 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GRA¬R˙W
19 simp31 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=G¬R˙P˙Q
20 1 2 3 4 5 6 7 cdleme35g KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙U˙P˙Q˙F˙W=R
21 16 17 18 19 20 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GF˙U˙P˙Q˙F˙W=R
22 simp23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GSA¬S˙W
23 simp32 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=G¬S˙P˙Q
24 1 2 3 4 5 6 8 cdleme35g KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙QG˙U˙P˙Q˙G˙W=S
25 16 17 22 23 24 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GG˙U˙P˙Q˙G˙W=S
26 15 21 25 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙W¬R˙P˙Q¬S˙P˙QF=GR=S