Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefr27.b |
|- B = ( Base ` K ) |
2 |
|
cdlemefr27.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemefr27.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemefr27.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemefr27.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemefr27.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemefr27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdlemefr27.c |
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdlemefr27.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
10 |
|
breq1 |
|- ( s = R -> ( s .<_ ( P .\/ Q ) <-> R .<_ ( P .\/ Q ) ) ) |
11 |
10
|
notbid |
|- ( s = R -> ( -. s .<_ ( P .\/ Q ) <-> -. R .<_ ( P .\/ Q ) ) ) |
12 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
13 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P e. A ) |
14 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> Q e. A ) |
15 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> s e. A ) |
16 |
|
simp3rr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. s .<_ ( P .\/ Q ) ) |
17 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P =/= Q ) |
18 |
1 2 3 4 5 6 7 8 9
|
cdlemefr27cl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) /\ ( s e. A /\ -. s .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> N e. B ) |
19 |
12 13 14 15 16 17 18
|
syl33anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> N e. B ) |
20 |
1 2 3 4 5 6 11 19
|
cdlemefrs29bpre0 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( A. s e. A ( ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> z = [_ R / s ]_ N ) ) |