Metamath Proof Explorer


Theorem cdlemefrs29bpre0

Description: TODO fix comment. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs27.b
|- B = ( Base ` K )
cdlemefrs27.l
|- .<_ = ( le ` K )
cdlemefrs27.j
|- .\/ = ( join ` K )
cdlemefrs27.m
|- ./\ = ( meet ` K )
cdlemefrs27.a
|- A = ( Atoms ` K )
cdlemefrs27.h
|- H = ( LHyp ` K )
cdlemefrs27.eq
|- ( s = R -> ( ph <-> ps ) )
cdlemefrs27.nb
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B )
Assertion cdlemefrs29bpre0
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> z = [_ R / s ]_ N ) )

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b
 |-  B = ( Base ` K )
2 cdlemefrs27.l
 |-  .<_ = ( le ` K )
3 cdlemefrs27.j
 |-  .\/ = ( join ` K )
4 cdlemefrs27.m
 |-  ./\ = ( meet ` K )
5 cdlemefrs27.a
 |-  A = ( Atoms ` K )
6 cdlemefrs27.h
 |-  H = ( LHyp ` K )
7 cdlemefrs27.eq
 |-  ( s = R -> ( ph <-> ps ) )
8 cdlemefrs27.nb
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B )
9 df-ral
 |-  ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) )
10 anass
 |-  ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) )
11 10 imbi1i
 |-  ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) -> z = ( N .\/ ( R ./\ W ) ) ) )
12 impexp
 |-  ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) )
13 impexp
 |-  ( ( ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) )
14 11 12 13 3bitr3ri
 |-  ( ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) )
15 simpl11
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( K e. HL /\ W e. H ) )
16 simpl2r
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( R e. A /\ -. R .<_ W ) )
17 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
18 2 4 17 5 6 lhpmat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) )
19 15 16 18 syl2anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( R ./\ W ) = ( 0. ` K ) )
20 19 oveq2d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( R ./\ W ) ) = ( s .\/ ( 0. ` K ) ) )
21 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> K e. HL )
22 hlol
 |-  ( K e. HL -> K e. OL )
23 21 22 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> K e. OL )
24 23 adantr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> K e. OL )
25 simprl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> s e. A )
26 1 5 atbase
 |-  ( s e. A -> s e. B )
27 25 26 syl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> s e. B )
28 1 3 17 olj01
 |-  ( ( K e. OL /\ s e. B ) -> ( s .\/ ( 0. ` K ) ) = s )
29 24 27 28 syl2anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( 0. ` K ) ) = s )
30 20 29 eqtrd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( R ./\ W ) ) = s )
31 30 eqeq1d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( s .\/ ( R ./\ W ) ) = R <-> s = R ) )
32 19 oveq2d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( R ./\ W ) ) = ( N .\/ ( 0. ` K ) ) )
33 simpl1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
34 simpl2l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> P =/= Q )
35 simprr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( -. s .<_ W /\ ph ) )
36 33 34 25 35 8 syl112anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B )
37 1 3 17 olj01
 |-  ( ( K e. OL /\ N e. B ) -> ( N .\/ ( 0. ` K ) ) = N )
38 24 36 37 syl2anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( 0. ` K ) ) = N )
39 32 38 eqtrd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( R ./\ W ) ) = N )
40 39 eqeq2d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( z = ( N .\/ ( R ./\ W ) ) <-> z = N ) )
41 31 40 imbi12d
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s = R -> z = N ) ) )
42 41 pm5.74da
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) ) )
43 impexp
 |-  ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) )
44 simp2rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> R e. A )
45 simp2rr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> -. R .<_ W )
46 simp3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ps )
47 eleq1
 |-  ( s = R -> ( s e. A <-> R e. A ) )
48 breq1
 |-  ( s = R -> ( s .<_ W <-> R .<_ W ) )
49 48 notbid
 |-  ( s = R -> ( -. s .<_ W <-> -. R .<_ W ) )
50 49 7 anbi12d
 |-  ( s = R -> ( ( -. s .<_ W /\ ph ) <-> ( -. R .<_ W /\ ps ) ) )
51 47 50 anbi12d
 |-  ( s = R -> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) <-> ( R e. A /\ ( -. R .<_ W /\ ps ) ) ) )
52 51 biimprcd
 |-  ( ( R e. A /\ ( -. R .<_ W /\ ps ) ) -> ( s = R -> ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) )
53 44 45 46 52 syl12anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( s = R -> ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) )
54 53 pm4.71rd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( s = R <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) ) )
55 54 imbi1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( s = R -> z = N ) <-> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) ) )
56 eqcom
 |-  ( z = N <-> N = z )
57 56 imbi2i
 |-  ( ( s = R -> z = N ) <-> ( s = R -> N = z ) )
58 55 57 bitr3di
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) <-> ( s = R -> N = z ) ) )
59 43 58 bitr3id
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) <-> ( s = R -> N = z ) ) )
60 42 59 bitrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( s = R -> N = z ) ) )
61 14 60 syl5bb
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( s = R -> N = z ) ) )
62 61 albidv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> A. s ( s = R -> N = z ) ) )
63 9 62 syl5bb
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s ( s = R -> N = z ) ) )
64 nfcv
 |-  F/_ s z
65 64 csbiebg
 |-  ( R e. A -> ( A. s ( s = R -> N = z ) <-> [_ R / s ]_ N = z ) )
66 44 65 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s = R -> N = z ) <-> [_ R / s ]_ N = z ) )
67 eqcom
 |-  ( [_ R / s ]_ N = z <-> z = [_ R / s ]_ N )
68 66 67 bitrdi
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s = R -> N = z ) <-> z = [_ R / s ]_ N ) )
69 63 68 bitrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> z = [_ R / s ]_ N ) )