| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemefrs27.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdlemefrs27.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdlemefrs27.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdlemefrs27.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
cdlemefrs27.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
cdlemefrs27.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
cdlemefrs27.eq |
⊢ ( 𝑠 = 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
| 8 |
|
cdlemefrs27.nb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑁 ∈ 𝐵 ) |
| 9 |
|
df-ral |
⊢ ( ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ∀ 𝑠 ( 𝑠 ∈ 𝐴 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
| 10 |
|
anass |
⊢ ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( 𝑠 ∈ 𝐴 ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
| 11 |
10
|
imbi1i |
⊢ ( ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( ( 𝑠 ∈ 𝐴 ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
| 12 |
|
impexp |
⊢ ( ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
| 13 |
|
impexp |
⊢ ( ( ( 𝑠 ∈ 𝐴 ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( 𝑠 ∈ 𝐴 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
| 14 |
11 12 13
|
3bitr3ri |
⊢ ( ( 𝑠 ∈ 𝐴 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ↔ ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
| 15 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 16 |
|
simpl2r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
| 17 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 18 |
2 4 17 5 6
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
| 19 |
15 16 18
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) ) |
| 21 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝐾 ∈ HL ) |
| 22 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝐾 ∈ OL ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝐾 ∈ OL ) |
| 25 |
|
simprl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑠 ∈ 𝐴 ) |
| 26 |
1 5
|
atbase |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ 𝐵 ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑠 ∈ 𝐵 ) |
| 28 |
1 3 17
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑠 ∈ 𝐵 ) → ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) = 𝑠 ) |
| 29 |
24 27 28
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) = 𝑠 ) |
| 30 |
20 29
|
eqtrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑠 ) |
| 31 |
30
|
eqeq1d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ↔ 𝑠 = 𝑅 ) ) |
| 32 |
19
|
oveq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) = ( 𝑁 ∨ ( 0. ‘ 𝐾 ) ) ) |
| 33 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
| 34 |
|
simpl2l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 35 |
|
simprr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) |
| 36 |
33 34 25 35 8
|
syl112anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑁 ∈ 𝐵 ) |
| 37 |
1 3 17
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑁 ∈ 𝐵 ) → ( 𝑁 ∨ ( 0. ‘ 𝐾 ) ) = 𝑁 ) |
| 38 |
24 36 37
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑁 ∨ ( 0. ‘ 𝐾 ) ) = 𝑁 ) |
| 39 |
32 38
|
eqtrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑁 ) |
| 40 |
39
|
eqeq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ↔ 𝑧 = 𝑁 ) ) |
| 41 |
31 40
|
imbi12d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → ( ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ) |
| 42 |
41
|
pm5.74da |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ↔ ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) → ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ) ) |
| 43 |
|
impexp |
⊢ ( ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ∧ 𝑠 = 𝑅 ) → 𝑧 = 𝑁 ) ↔ ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) → ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ) |
| 44 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝑅 ∈ 𝐴 ) |
| 45 |
|
simp2rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ¬ 𝑅 ≤ 𝑊 ) |
| 46 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝜓 ) |
| 47 |
|
eleq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ∈ 𝐴 ↔ 𝑅 ∈ 𝐴 ) ) |
| 48 |
|
breq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊 ) ) |
| 49 |
48
|
notbid |
⊢ ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊 ) ) |
| 50 |
49 7
|
anbi12d |
⊢ ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ↔ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝜓 ) ) ) |
| 51 |
47 50
|
anbi12d |
⊢ ( 𝑠 = 𝑅 → ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ↔ ( 𝑅 ∈ 𝐴 ∧ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝜓 ) ) ) ) |
| 52 |
51
|
biimprcd |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ ( ¬ 𝑅 ≤ 𝑊 ∧ 𝜓 ) ) → ( 𝑠 = 𝑅 → ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) ) |
| 53 |
44 45 46 52
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( 𝑠 = 𝑅 → ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) ) |
| 54 |
53
|
pm4.71rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( 𝑠 = 𝑅 ↔ ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ∧ 𝑠 = 𝑅 ) ) ) |
| 55 |
54
|
imbi1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ↔ ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ∧ 𝑠 = 𝑅 ) → 𝑧 = 𝑁 ) ) ) |
| 56 |
|
eqcom |
⊢ ( 𝑧 = 𝑁 ↔ 𝑁 = 𝑧 ) |
| 57 |
56
|
imbi2i |
⊢ ( ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ↔ ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ) |
| 58 |
55 57
|
bitr3di |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ∧ 𝑠 = 𝑅 ) → 𝑧 = 𝑁 ) ↔ ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ) ) |
| 59 |
43 58
|
bitr3id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) → ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ↔ ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ) ) |
| 60 |
42 59
|
bitrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ( ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ↔ ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ) ) |
| 61 |
14 60
|
bitrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ( 𝑠 ∈ 𝐴 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ↔ ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ) ) |
| 62 |
61
|
albidv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠 ( 𝑠 ∈ 𝐴 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ↔ ∀ 𝑠 ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ) ) |
| 63 |
9 62
|
bitrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ∀ 𝑠 ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ) ) |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑧 |
| 65 |
64
|
csbiebg |
⊢ ( 𝑅 ∈ 𝐴 → ( ∀ 𝑠 ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ↔ ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = 𝑧 ) ) |
| 66 |
44 65
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠 ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ↔ ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = 𝑧 ) ) |
| 67 |
|
eqcom |
⊢ ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = 𝑧 ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |
| 68 |
66 67
|
bitrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠 ( 𝑠 = 𝑅 → 𝑁 = 𝑧 ) ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) |
| 69 |
63 68
|
bitrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) |