| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemef46g.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemef46g.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemef46g.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cdlemef46g.m |  |-  ./\ = ( meet ` K ) | 
						
							| 5 |  | cdlemef46g.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | cdlemef46g.h |  |-  H = ( LHyp ` K ) | 
						
							| 7 |  | cdlemef46g.u |  |-  U = ( ( P .\/ Q ) ./\ W ) | 
						
							| 8 |  | cdlemef46g.d |  |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) | 
						
							| 9 |  | cdlemefs46g.e |  |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) | 
						
							| 10 |  | cdlemef46g.f |  |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) | 
						
							| 11 |  | cdlemef46.v |  |-  V = ( ( Q .\/ P ) ./\ W ) | 
						
							| 12 |  | cdlemef46.n |  |-  N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) | 
						
							| 13 |  | cdlemefs46.o |  |-  O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) ) | 
						
							| 14 |  | cdlemef46.g |  |-  G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) ) | 
						
							| 15 |  | cdlemeg46.y |  |-  Y = ( ( R .\/ ( G ` S ) ) ./\ W ) | 
						
							| 16 |  | eqid |  |-  ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) | 
						
							| 17 |  | eqid |  |-  ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) | 
						
							| 18 |  | eqid |  |-  ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) | 
						
							| 19 |  | eqid |  |-  ( ( Q .\/ P ) ./\ ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W ) ) ) | 
						
							| 20 |  | eqid |  |-  ( ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ U ) ./\ ( Q .\/ ( ( P .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) ) = ( ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ U ) ./\ ( Q .\/ ( ( P .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) ) | 
						
							| 21 |  | eqid |  |-  ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W ) = ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W ) | 
						
							| 22 |  | eqid |  |-  ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) = ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) | 
						
							| 23 | 1 2 3 4 5 6 7 11 16 17 18 19 20 21 22 | cdleme43cN |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) = ( R .\/ ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) ) | 
						
							| 24 | 23 | 3adant3l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) = ( R .\/ ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) ) | 
						
							| 25 |  | simp1 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) | 
						
							| 26 |  | simp21 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q ) | 
						
							| 27 |  | simp23 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) ) | 
						
							| 28 |  | simp3r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) | 
						
							| 29 | 1 2 3 4 5 6 11 12 13 14 | cdlemeg47b |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( G ` S ) = [_ S / v ]_ N ) | 
						
							| 30 | 25 26 27 28 29 | syl121anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) = [_ S / v ]_ N ) | 
						
							| 31 |  | simp23l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A ) | 
						
							| 32 | 12 18 | cdleme31sc |  |-  ( S e. A -> [_ S / v ]_ N = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ S / v ]_ N = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) | 
						
							| 34 | 30 33 | eqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( G ` S ) ) = ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ ( G ` S ) ) ./\ W ) = ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) | 
						
							| 37 | 15 36 | eqtrid |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> Y = ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ Y ) = ( R .\/ ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) ) | 
						
							| 39 | 24 35 38 | 3eqtr4d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( G ` S ) ) = ( R .\/ Y ) ) |