| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemef46g.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cdlemef46g.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | cdlemef46g.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | cdlemef46g.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | cdlemef46g.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 |  | cdlemef46g.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 7 |  | cdlemef46g.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 8 |  | cdlemef46g.d | ⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 9 |  | cdlemefs46g.e | ⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 10 |  | cdlemef46g.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) ) ,  𝑥 ) ) | 
						
							| 11 |  | cdlemef46.v | ⊢ 𝑉  =  ( ( 𝑄  ∨  𝑃 )  ∧  𝑊 ) | 
						
							| 12 |  | cdlemef46.n | ⊢ 𝑁  =  ( ( 𝑣  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑣 )  ∧  𝑊 ) ) ) | 
						
							| 13 |  | cdlemefs46.o | ⊢ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( 𝑁  ∨  ( ( 𝑢  ∨  𝑣 )  ∧  𝑊 ) ) ) | 
						
							| 14 |  | cdlemef46.g | ⊢ 𝐺  =  ( 𝑎  ∈  𝐵  ↦  if ( ( 𝑄  ≠  𝑃  ∧  ¬  𝑎  ≤  𝑊 ) ,  ( ℩ 𝑐  ∈  𝐵 ∀ 𝑢  ∈  𝐴 ( ( ¬  𝑢  ≤  𝑊  ∧  ( 𝑢  ∨  ( 𝑎  ∧  𝑊 ) )  =  𝑎 )  →  𝑐  =  ( if ( 𝑢  ≤  ( 𝑄  ∨  𝑃 ) ,  ( ℩ 𝑏  ∈  𝐵 ∀ 𝑣  ∈  𝐴 ( ( ¬  𝑣  ≤  𝑊  ∧  ¬  𝑣  ≤  ( 𝑄  ∨  𝑃 ) )  →  𝑏  =  𝑂 ) ) ,  ⦋ 𝑢  /  𝑣 ⦌ 𝑁 )  ∨  ( 𝑎  ∧  𝑊 ) ) ) ) ,  𝑎 ) ) | 
						
							| 15 |  | cdlemeg46.y | ⊢ 𝑌  =  ( ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) )  ∧  𝑊 ) | 
						
							| 16 |  | eqid | ⊢ ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( ( 𝑄  ∨  𝑃 )  ∧  ( ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  𝑆 )  ∧  𝑊 ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( ( ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) ) )  =  ( ( ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( ( ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  𝑆 )  ∧  𝑊 )  =  ( ( ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  ∨  𝑆 )  ∧  𝑊 ) | 
						
							| 22 |  | eqid | ⊢ ( ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 )  =  ( ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) | 
						
							| 23 | 1 2 3 4 5 6 7 11 16 17 18 19 20 21 22 | cdleme43cN | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  =  ( 𝑅  ∨  ( ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) ) ) | 
						
							| 24 | 23 | 3adant3l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  =  ( 𝑅  ∨  ( ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) ) ) | 
						
							| 25 |  | simp1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) ) | 
						
							| 26 |  | simp21 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 27 |  | simp23 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) ) | 
						
							| 28 |  | simp3r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 29 | 1 2 3 4 5 6 11 12 13 14 | cdlemeg47b | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐺 ‘ 𝑆 )  =  ⦋ 𝑆  /  𝑣 ⦌ 𝑁 ) | 
						
							| 30 | 25 26 27 28 29 | syl121anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑆 )  =  ⦋ 𝑆  /  𝑣 ⦌ 𝑁 ) | 
						
							| 31 |  | simp23l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑆  ∈  𝐴 ) | 
						
							| 32 | 12 18 | cdleme31sc | ⊢ ( 𝑆  ∈  𝐴  →  ⦋ 𝑆  /  𝑣 ⦌ 𝑁  =  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ⦋ 𝑆  /  𝑣 ⦌ 𝑁  =  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) ) | 
						
							| 34 | 30 33 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑆 )  =  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) )  =  ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) )  ∧  𝑊 )  =  ( ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) ) | 
						
							| 37 | 15 36 | eqtrid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑌  =  ( ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  𝑌 )  =  ( 𝑅  ∨  ( ( 𝑅  ∨  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) ) )  ∧  𝑊 ) ) ) | 
						
							| 39 | 24 35 38 | 3eqtr4d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) )  =  ( 𝑅  ∨  𝑌 ) ) |