| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 | 1 2 3 4 5 6 7 | cdlemg12b |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( ( G ` P ) .\/ ( G ` Q ) ) ) .<_ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) ) | 
						
							| 9 |  | simp1l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> K e. HL ) | 
						
							| 10 |  | simp21l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> P e. A ) | 
						
							| 11 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | simp31 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> G e. T ) | 
						
							| 13 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) | 
						
							| 14 | 11 12 10 13 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( G ` P ) e. A ) | 
						
							| 15 |  | simp23 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> F e. T ) | 
						
							| 16 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( G ` P ) e. A ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 17 | 11 15 14 16 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( F ` ( G ` P ) ) e. A ) | 
						
							| 18 |  | simp22l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> Q e. A ) | 
						
							| 19 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ Q e. A ) -> ( G ` Q ) e. A ) | 
						
							| 20 | 11 12 18 19 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( G ` Q ) e. A ) | 
						
							| 21 | 1 4 5 6 | ltrncoat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ Q e. A ) -> ( F ` ( G ` Q ) ) e. A ) | 
						
							| 22 | 11 15 12 18 21 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( F ` ( G ` Q ) ) e. A ) | 
						
							| 23 | 1 2 3 4 | dalaw |  |-  ( ( K e. HL /\ ( P e. A /\ ( G ` P ) e. A /\ ( F ` ( G ` P ) ) e. A ) /\ ( Q e. A /\ ( G ` Q ) e. A /\ ( F ` ( G ` Q ) ) e. A ) ) -> ( ( ( P .\/ Q ) ./\ ( ( G ` P ) .\/ ( G ` Q ) ) ) .<_ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) ) | 
						
							| 24 | 9 10 14 17 18 20 22 23 | syl133anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ ( ( G ` P ) .\/ ( G ` Q ) ) ) .<_ ( ( F ` ( G ` P ) ) .\/ ( F ` ( G ` Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) ) | 
						
							| 25 | 8 24 | mpd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) |