| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simp11 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | simp12 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 10 |  | simp13 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 11 |  | simp2l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> F e. T ) | 
						
							| 12 |  | simp2r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> G e. T ) | 
						
							| 13 |  | simp31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> P =/= Q ) | 
						
							| 14 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` G ) .<_ ( P .\/ Q ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 | cdlemg12c |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) | 
						
							| 16 | 8 9 10 11 12 13 14 15 | syl133anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 | trlval4 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) ) | 
						
							| 18 | 8 12 9 10 13 14 17 | syl132anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) ) | 
						
							| 19 | 1 4 5 6 | ltrnel |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) | 
						
							| 20 | 8 12 9 19 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) | 
						
							| 21 | 1 4 5 6 | ltrnel |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) ) | 
						
							| 22 | 8 12 10 21 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) ) | 
						
							| 23 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> P e. A ) | 
						
							| 24 |  | simp13l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> Q e. A ) | 
						
							| 25 | 4 5 6 | ltrn11at |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ Q e. A /\ P =/= Q ) ) -> ( G ` P ) =/= ( G ` Q ) ) | 
						
							| 26 | 8 12 23 24 13 25 | syl113anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( G ` P ) =/= ( G ` Q ) ) | 
						
							| 27 |  | simp32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( P .\/ Q ) ) | 
						
							| 28 |  | simp2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( F e. T /\ G e. T ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 | cdlemg10c |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) <-> ( R ` F ) .<_ ( P .\/ Q ) ) ) | 
						
							| 30 | 8 9 10 28 29 | syl121anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) <-> ( R ` F ) .<_ ( P .\/ Q ) ) ) | 
						
							| 31 | 27 30 | mtbird |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) ) | 
						
							| 32 | 1 2 3 4 5 6 7 | trlval4 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) ) /\ ( ( G ` P ) =/= ( G ` Q ) /\ -. ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) ) | 
						
							| 33 | 8 11 20 22 26 31 32 | syl132anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) = ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) | 
						
							| 35 | 16 18 34 | 3brtr4d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) .<_ ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) |