Metamath Proof Explorer


Theorem cdlemg12d

Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses cdlemg12.l
|- .<_ = ( le ` K )
cdlemg12.j
|- .\/ = ( join ` K )
cdlemg12.m
|- ./\ = ( meet ` K )
cdlemg12.a
|- A = ( Atoms ` K )
cdlemg12.h
|- H = ( LHyp ` K )
cdlemg12.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg12b.r
|- R = ( ( trL ` K ) ` W )
Assertion cdlemg12d
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) .<_ ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l
 |-  .<_ = ( le ` K )
2 cdlemg12.j
 |-  .\/ = ( join ` K )
3 cdlemg12.m
 |-  ./\ = ( meet ` K )
4 cdlemg12.a
 |-  A = ( Atoms ` K )
5 cdlemg12.h
 |-  H = ( LHyp ` K )
6 cdlemg12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemg12b.r
 |-  R = ( ( trL ` K ) ` W )
8 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) )
9 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) )
10 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
11 simp2l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> F e. T )
12 simp2r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> G e. T )
13 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> P =/= Q )
14 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` G ) .<_ ( P .\/ Q ) )
15 1 2 3 4 5 6 7 cdlemg12c
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ F e. T ) /\ ( G e. T /\ P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) )
16 8 9 10 11 12 13 14 15 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) .<_ ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) )
17 1 2 3 4 5 6 7 trlval4
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) )
18 8 12 9 10 13 14 17 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) = ( ( P .\/ ( G ` P ) ) ./\ ( Q .\/ ( G ` Q ) ) ) )
19 1 4 5 6 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
20 8 12 9 19 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
21 1 4 5 6 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) )
22 8 12 10 21 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) )
23 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> P e. A )
24 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> Q e. A )
25 4 5 6 ltrn11at
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ Q e. A /\ P =/= Q ) ) -> ( G ` P ) =/= ( G ` Q ) )
26 8 12 23 24 13 25 syl113anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( G ` P ) =/= ( G ` Q ) )
27 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( P .\/ Q ) )
28 simp2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( F e. T /\ G e. T ) )
29 1 2 3 4 5 6 7 cdlemg10c
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) ) -> ( ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) <-> ( R ` F ) .<_ ( P .\/ Q ) ) )
30 8 9 10 28 29 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) <-> ( R ` F ) .<_ ( P .\/ Q ) ) )
31 27 30 mtbird
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> -. ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) )
32 1 2 3 4 5 6 7 trlval4
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( ( G ` Q ) e. A /\ -. ( G ` Q ) .<_ W ) ) /\ ( ( G ` P ) =/= ( G ` Q ) /\ -. ( R ` F ) .<_ ( ( G ` P ) .\/ ( G ` Q ) ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) )
33 8 11 20 22 26 31 32 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` F ) = ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) )
34 33 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) = ( ( ( ( G ` P ) .\/ ( F ` ( G ` P ) ) ) ./\ ( ( G ` Q ) .\/ ( F ` ( G ` Q ) ) ) ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) )
35 16 18 34 3brtr4d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) .<_ ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) )