| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | cdlemg12.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | cdlemg12.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | cdlemg12.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | cdlemg12.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | cdlemg12.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | cdlemg12b.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | cdlemg12e.z |  |-  .0. = ( 0. ` K ) | 
						
							| 9 |  | simp33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` F ) =/= ( R ` G ) ) | 
						
							| 10 |  | simpl1 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) | 
						
							| 11 |  | simpl21 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> F e. T ) | 
						
							| 12 |  | simpl22 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> G e. T ) | 
						
							| 13 |  | simpl23 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> P =/= Q ) | 
						
							| 14 |  | simpl31 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> -. ( R ` F ) .<_ ( P .\/ Q ) ) | 
						
							| 15 |  | simpl32 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> -. ( R ` G ) .<_ ( P .\/ Q ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 | cdlemg12d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) ) -> ( R ` G ) .<_ ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) | 
						
							| 17 | 10 11 12 13 14 15 16 | syl123anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` G ) .<_ ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) = ( ( R ` F ) .\/ .0. ) ) | 
						
							| 20 |  | simp11l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. HL ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> K e. HL ) | 
						
							| 22 |  | hlol |  |-  ( K e. HL -> K e. OL ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> K e. OL ) | 
						
							| 24 |  | simpl11 |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 25 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 26 | 25 5 6 7 | trlcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 27 | 24 11 26 | syl2anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 28 | 25 2 8 | olj01 |  |-  ( ( K e. OL /\ ( R ` F ) e. ( Base ` K ) ) -> ( ( R ` F ) .\/ .0. ) = ( R ` F ) ) | 
						
							| 29 | 23 27 28 | syl2anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( R ` F ) .\/ .0. ) = ( R ` F ) ) | 
						
							| 30 | 19 29 | eqtrd |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( R ` F ) .\/ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) ) = ( R ` F ) ) | 
						
							| 31 | 17 30 | breqtrd |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` G ) .<_ ( R ` F ) ) | 
						
							| 32 |  | hlatl |  |-  ( K e. HL -> K e. AtLat ) | 
						
							| 33 | 21 32 | syl |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> K e. AtLat ) | 
						
							| 34 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 35 | 21 34 | syl |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> K e. OP ) | 
						
							| 36 | 25 5 6 7 | trlcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. ( Base ` K ) ) | 
						
							| 37 | 24 12 36 | syl2anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` G ) e. ( Base ` K ) ) | 
						
							| 38 |  | simp12l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> P e. A ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> P e. A ) | 
						
							| 40 |  | simp13l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> Q e. A ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> Q e. A ) | 
						
							| 42 | 25 2 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 43 | 21 39 41 42 | syl3anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 44 | 25 1 8 | opnlen0 |  |-  ( ( ( K e. OP /\ ( R ` G ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) ) -> ( R ` G ) =/= .0. ) | 
						
							| 45 | 35 37 43 15 44 | syl31anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` G ) =/= .0. ) | 
						
							| 46 |  | simp11r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> W e. H ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> W e. H ) | 
						
							| 48 | 8 4 5 6 7 | trlatn0 |  |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( ( R ` G ) e. A <-> ( R ` G ) =/= .0. ) ) | 
						
							| 49 | 21 47 12 48 | syl21anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( R ` G ) e. A <-> ( R ` G ) =/= .0. ) ) | 
						
							| 50 | 45 49 | mpbird |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` G ) e. A ) | 
						
							| 51 | 25 1 8 | opnlen0 |  |-  ( ( ( K e. OP /\ ( R ` F ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ -. ( R ` F ) .<_ ( P .\/ Q ) ) -> ( R ` F ) =/= .0. ) | 
						
							| 52 | 35 27 43 14 51 | syl31anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` F ) =/= .0. ) | 
						
							| 53 | 8 4 5 6 7 | trlatn0 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. A <-> ( R ` F ) =/= .0. ) ) | 
						
							| 54 | 21 47 11 53 | syl21anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( R ` F ) e. A <-> ( R ` F ) =/= .0. ) ) | 
						
							| 55 | 52 54 | mpbird |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` F ) e. A ) | 
						
							| 56 | 1 4 | atcmp |  |-  ( ( K e. AtLat /\ ( R ` G ) e. A /\ ( R ` F ) e. A ) -> ( ( R ` G ) .<_ ( R ` F ) <-> ( R ` G ) = ( R ` F ) ) ) | 
						
							| 57 | 33 50 55 56 | syl3anc |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( ( R ` G ) .<_ ( R ` F ) <-> ( R ` G ) = ( R ` F ) ) ) | 
						
							| 58 | 31 57 | mpbid |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` G ) = ( R ` F ) ) | 
						
							| 59 | 58 | eqcomd |  |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. ) -> ( R ` F ) = ( R ` G ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) = .0. -> ( R ` F ) = ( R ` G ) ) ) | 
						
							| 61 | 60 | necon3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( R ` F ) =/= ( R ` G ) -> ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) =/= .0. ) ) | 
						
							| 62 | 9 61 | mpd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F e. T /\ G e. T /\ P =/= Q ) /\ ( -. ( R ` F ) .<_ ( P .\/ Q ) /\ -. ( R ` G ) .<_ ( P .\/ Q ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( F ` ( G ` P ) ) .\/ P ) ./\ ( ( F ` ( G ` Q ) ) .\/ Q ) ) =/= .0. ) |