Metamath Proof Explorer


Theorem cdlemg12e

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg12e.z 0˙=0.K
Assertion cdlemg12e KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q0˙

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg12e.z 0˙=0.K
9 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGRFRG
10 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙KHLWHPA¬P˙WQA¬Q˙W
11 simpl21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙FT
12 simpl22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙GT
13 simpl23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙PQ
14 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙¬RF˙P˙Q
15 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙¬RG˙P˙Q
16 1 2 3 4 5 6 7 cdlemg12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRG˙RF˙FGP˙P˙FGQ˙Q
17 10 11 12 13 14 15 16 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RG˙RF˙FGP˙P˙FGQ˙Q
18 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙FGP˙P˙FGQ˙Q=0˙
19 18 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RF˙FGP˙P˙FGQ˙Q=RF˙0˙
20 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGKHL
21 20 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙KHL
22 hlol KHLKOL
23 21 22 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙KOL
24 simpl11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙KHLWH
25 eqid BaseK=BaseK
26 25 5 6 7 trlcl KHLWHFTRFBaseK
27 24 11 26 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RFBaseK
28 25 2 8 olj01 KOLRFBaseKRF˙0˙=RF
29 23 27 28 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RF˙0˙=RF
30 19 29 eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RF˙FGP˙P˙FGQ˙Q=RF
31 17 30 breqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RG˙RF
32 hlatl KHLKAtLat
33 21 32 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙KAtLat
34 hlop KHLKOP
35 21 34 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙KOP
36 25 5 6 7 trlcl KHLWHGTRGBaseK
37 24 12 36 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RGBaseK
38 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGPA
39 38 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙PA
40 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGQA
41 40 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙QA
42 25 2 4 hlatjcl KHLPAQAP˙QBaseK
43 21 39 41 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙P˙QBaseK
44 25 1 8 opnlen0 KOPRGBaseKP˙QBaseK¬RG˙P˙QRG0˙
45 35 37 43 15 44 syl31anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RG0˙
46 simp11r KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGWH
47 46 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙WH
48 8 4 5 6 7 trlatn0 KHLWHGTRGARG0˙
49 21 47 12 48 syl21anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RGARG0˙
50 45 49 mpbird KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RGA
51 25 1 8 opnlen0 KOPRFBaseKP˙QBaseK¬RF˙P˙QRF0˙
52 35 27 43 14 51 syl31anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RF0˙
53 8 4 5 6 7 trlatn0 KHLWHFTRFARF0˙
54 21 47 11 53 syl21anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RFARF0˙
55 52 54 mpbird KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RFA
56 1 4 atcmp KAtLatRGARFARG˙RFRG=RF
57 33 50 55 56 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RG˙RFRG=RF
58 31 57 mpbid KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RG=RF
59 58 eqcomd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RF=RG
60 59 ex KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q=0˙RF=RG
61 60 necon3d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGRFRGFGP˙P˙FGQ˙Q0˙
62 9 61 mpd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙P˙FGQ˙Q0˙