Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg12e.z |
|
9 |
|
simp33 |
|
10 |
|
simpl1 |
|
11 |
|
simpl21 |
|
12 |
|
simpl22 |
|
13 |
|
simpl23 |
|
14 |
|
simpl31 |
|
15 |
|
simpl32 |
|
16 |
1 2 3 4 5 6 7
|
cdlemg12d |
|
17 |
10 11 12 13 14 15 16
|
syl123anc |
|
18 |
|
simpr |
|
19 |
18
|
oveq2d |
|
20 |
|
simp11l |
|
21 |
20
|
adantr |
|
22 |
|
hlol |
|
23 |
21 22
|
syl |
|
24 |
|
simpl11 |
|
25 |
|
eqid |
|
26 |
25 5 6 7
|
trlcl |
|
27 |
24 11 26
|
syl2anc |
|
28 |
25 2 8
|
olj01 |
|
29 |
23 27 28
|
syl2anc |
|
30 |
19 29
|
eqtrd |
|
31 |
17 30
|
breqtrd |
|
32 |
|
hlatl |
|
33 |
21 32
|
syl |
|
34 |
|
hlop |
|
35 |
21 34
|
syl |
|
36 |
25 5 6 7
|
trlcl |
|
37 |
24 12 36
|
syl2anc |
|
38 |
|
simp12l |
|
39 |
38
|
adantr |
|
40 |
|
simp13l |
|
41 |
40
|
adantr |
|
42 |
25 2 4
|
hlatjcl |
|
43 |
21 39 41 42
|
syl3anc |
|
44 |
25 1 8
|
opnlen0 |
|
45 |
35 37 43 15 44
|
syl31anc |
|
46 |
|
simp11r |
|
47 |
46
|
adantr |
|
48 |
8 4 5 6 7
|
trlatn0 |
|
49 |
21 47 12 48
|
syl21anc |
|
50 |
45 49
|
mpbird |
|
51 |
25 1 8
|
opnlen0 |
|
52 |
35 27 43 14 51
|
syl31anc |
|
53 |
8 4 5 6 7
|
trlatn0 |
|
54 |
21 47 11 53
|
syl21anc |
|
55 |
52 54
|
mpbird |
|
56 |
1 4
|
atcmp |
|
57 |
33 50 55 56
|
syl3anc |
|
58 |
31 57
|
mpbid |
|
59 |
58
|
eqcomd |
|
60 |
59
|
ex |
|
61 |
60
|
necon3d |
|
62 |
9 61
|
mpd |
|