Metamath Proof Explorer


Theorem cdlemg12d

Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg12d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRG˙RF˙FGP˙P˙FGQ˙Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QKHLWH
9 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QPA¬P˙W
10 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QQA¬Q˙W
11 simp2l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFT
12 simp2r KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QGT
13 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QPQ
14 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙Q¬RG˙P˙Q
15 1 2 3 4 5 6 7 cdlemg12c KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RG˙P˙QP˙GP˙Q˙GQ˙GP˙FGP˙GQ˙FGQ˙FGP˙P˙FGQ˙Q
16 8 9 10 11 12 13 14 15 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QP˙GP˙Q˙GQ˙GP˙FGP˙GQ˙FGQ˙FGP˙P˙FGQ˙Q
17 1 2 3 4 5 6 7 trlval4 KHLWHGTPA¬P˙WQA¬Q˙WPQ¬RG˙P˙QRG=P˙GP˙Q˙GQ
18 8 12 9 10 13 14 17 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRG=P˙GP˙Q˙GQ
19 1 4 5 6 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
20 8 12 9 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QGPA¬GP˙W
21 1 4 5 6 ltrnel KHLWHGTQA¬Q˙WGQA¬GQ˙W
22 8 12 10 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QGQA¬GQ˙W
23 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QPA
24 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QQA
25 4 5 6 ltrn11at KHLWHGTPAQAPQGPGQ
26 8 12 23 24 13 25 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QGPGQ
27 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙Q¬RF˙P˙Q
28 simp2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QFTGT
29 1 2 3 4 5 6 7 cdlemg10c KHLWHPA¬P˙WQA¬Q˙WFTGTRF˙GP˙GQRF˙P˙Q
30 8 9 10 28 29 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRF˙GP˙GQRF˙P˙Q
31 27 30 mtbird KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙Q¬RF˙GP˙GQ
32 1 2 3 4 5 6 7 trlval4 KHLWHFTGPA¬GP˙WGQA¬GQ˙WGPGQ¬RF˙GP˙GQRF=GP˙FGP˙GQ˙FGQ
33 8 11 20 22 26 31 32 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRF=GP˙FGP˙GQ˙FGQ
34 33 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRF˙FGP˙P˙FGQ˙Q=GP˙FGP˙GQ˙FGQ˙FGP˙P˙FGQ˙Q
35 16 18 34 3brtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRG˙RF˙FGP˙P˙FGQ˙Q