Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp11 |
|
9 |
|
simp12 |
|
10 |
|
simp13 |
|
11 |
|
simp2l |
|
12 |
|
simp2r |
|
13 |
|
simp31 |
|
14 |
|
simp33 |
|
15 |
1 2 3 4 5 6 7
|
cdlemg12c |
|
16 |
8 9 10 11 12 13 14 15
|
syl133anc |
|
17 |
1 2 3 4 5 6 7
|
trlval4 |
|
18 |
8 12 9 10 13 14 17
|
syl132anc |
|
19 |
1 4 5 6
|
ltrnel |
|
20 |
8 12 9 19
|
syl3anc |
|
21 |
1 4 5 6
|
ltrnel |
|
22 |
8 12 10 21
|
syl3anc |
|
23 |
|
simp12l |
|
24 |
|
simp13l |
|
25 |
4 5 6
|
ltrn11at |
|
26 |
8 12 23 24 13 25
|
syl113anc |
|
27 |
|
simp32 |
|
28 |
|
simp2 |
|
29 |
1 2 3 4 5 6 7
|
cdlemg10c |
|
30 |
8 9 10 28 29
|
syl121anc |
|
31 |
27 30
|
mtbird |
|
32 |
1 2 3 4 5 6 7
|
trlval4 |
|
33 |
8 11 20 22 26 31 32
|
syl132anc |
|
34 |
33
|
oveq1d |
|
35 |
16 18 34
|
3brtr4d |
|