| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg12.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg12.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg12.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg12.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg12.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | cdlemg12b.r | ⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | cdlemg12e.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 9 |  | simp33 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 10 |  | simpl1 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) ) | 
						
							| 11 |  | simpl21 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝐹  ∈  𝑇 ) | 
						
							| 12 |  | simpl22 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝐺  ∈  𝑇 ) | 
						
							| 13 |  | simpl23 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝑃  ≠  𝑄 ) | 
						
							| 14 |  | simpl31 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 15 |  | simpl32 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 | cdlemg12d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅 ‘ 𝐺 )  ≤  ( ( 𝑅 ‘ 𝐹 )  ∨  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) ) ) ) | 
						
							| 17 | 10 11 12 13 14 15 16 | syl123anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐺 )  ≤  ( ( 𝑅 ‘ 𝐹 )  ∨  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( 𝑅 ‘ 𝐹 )  ∨  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) ) )  =  ( ( 𝑅 ‘ 𝐹 )  ∨   0  ) ) | 
						
							| 20 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝐾  ∈  HL ) | 
						
							| 22 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝐾  ∈  OL ) | 
						
							| 24 |  | simpl11 | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 26 | 25 5 6 7 | trlcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 27 | 24 11 26 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 28 | 25 2 8 | olj01 | ⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑅 ‘ 𝐹 )  ∨   0  )  =  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 29 | 23 27 28 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( 𝑅 ‘ 𝐹 )  ∨   0  )  =  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 30 | 19 29 | eqtrd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( 𝑅 ‘ 𝐹 )  ∨  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) ) )  =  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 31 | 17 30 | breqtrd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 32 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 33 | 21 32 | syl | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝐾  ∈  AtLat ) | 
						
							| 34 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 35 | 21 34 | syl | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝐾  ∈  OP ) | 
						
							| 36 | 25 5 6 7 | trlcl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 37 | 24 12 36 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 38 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝑃  ∈  𝐴 ) | 
						
							| 40 |  | simp13l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝑄  ∈  𝐴 ) | 
						
							| 42 | 25 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 43 | 21 39 41 42 | syl3anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 44 | 25 1 8 | opnlen0 | ⊢ ( ( ( 𝐾  ∈  OP  ∧  ( 𝑅 ‘ 𝐺 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑅 ‘ 𝐺 )  ≠   0  ) | 
						
							| 45 | 35 37 43 15 44 | syl31anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐺 )  ≠   0  ) | 
						
							| 46 |  | simp11r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  𝑊  ∈  𝐻 ) | 
						
							| 48 | 8 4 5 6 7 | trlatn0 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐺  ∈  𝑇 )  →  ( ( 𝑅 ‘ 𝐺 )  ∈  𝐴  ↔  ( 𝑅 ‘ 𝐺 )  ≠   0  ) ) | 
						
							| 49 | 21 47 12 48 | syl21anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( 𝑅 ‘ 𝐺 )  ∈  𝐴  ↔  ( 𝑅 ‘ 𝐺 )  ≠   0  ) ) | 
						
							| 50 | 45 49 | mpbird | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐺 )  ∈  𝐴 ) | 
						
							| 51 | 25 1 8 | opnlen0 | ⊢ ( ( ( 𝐾  ∈  OP  ∧  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑅 ‘ 𝐹 )  ≠   0  ) | 
						
							| 52 | 35 27 43 14 51 | syl31anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐹 )  ≠   0  ) | 
						
							| 53 | 8 4 5 6 7 | trlatn0 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ↔  ( 𝑅 ‘ 𝐹 )  ≠   0  ) ) | 
						
							| 54 | 21 47 11 53 | syl21anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( 𝑅 ‘ 𝐹 )  ∈  𝐴  ↔  ( 𝑅 ‘ 𝐹 )  ≠   0  ) ) | 
						
							| 55 | 52 54 | mpbird | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐹 )  ∈  𝐴 ) | 
						
							| 56 | 1 4 | atcmp | ⊢ ( ( 𝐾  ∈  AtLat  ∧  ( 𝑅 ‘ 𝐺 )  ∈  𝐴  ∧  ( 𝑅 ‘ 𝐹 )  ∈  𝐴 )  →  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑅 ‘ 𝐹 )  ↔  ( 𝑅 ‘ 𝐺 )  =  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 57 | 33 50 55 56 | syl3anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑅 ‘ 𝐹 )  ↔  ( 𝑅 ‘ 𝐺 )  =  ( 𝑅 ‘ 𝐹 ) ) ) | 
						
							| 58 | 31 57 | mpbid | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐺 )  =  ( 𝑅 ‘ 𝐹 ) ) | 
						
							| 59 | 58 | eqcomd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  ∧  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0  )  →  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  =   0   →  ( 𝑅 ‘ 𝐹 )  =  ( 𝑅 ‘ 𝐺 ) ) ) | 
						
							| 61 | 60 | necon3d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  ( ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  ≠   0  ) ) | 
						
							| 62 | 9 61 | mpd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇  ∧  𝑃  ≠  𝑄 )  ∧  ( ¬  ( 𝑅 ‘ 𝐹 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ( 𝑅 ‘ 𝐺 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ( 𝑅 ‘ 𝐹 )  ≠  ( 𝑅 ‘ 𝐺 ) ) )  →  ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) )  ∨  𝑃 )  ∧  ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) )  ∨  𝑄 ) )  ≠   0  ) |