Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk3.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk3.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk3.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk3.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk3.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk3.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk3.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk3.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk3.u1 |
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) |
11 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) ) |
12 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` G ) =/= ( R ` D ) ) |
13 |
|
simp331 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` x ) =/= ( R ` D ) ) |
14 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` C ) = ( R ` D ) ) |
15 |
13 14
|
neeqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` x ) =/= ( R ` C ) ) |
16 |
12 15
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( R ` G ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` C ) ) ) |
17 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) |
18 |
11 16 17
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` C ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) |
19 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk23-3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` C ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) ) |
20 |
18 19
|
syld3an3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) ) |