Metamath Proof Explorer


Theorem cdlemk24-3

Description: Part of proof of Lemma K of Crawley p. 118. Eliminate the ( Rx ) =/= ( RC ) requirement from cdlemk23-3 using ( RC ) = ( RD ) . (Contributed by NM, 7-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b
|- B = ( Base ` K )
cdlemk3.l
|- .<_ = ( le ` K )
cdlemk3.j
|- .\/ = ( join ` K )
cdlemk3.m
|- ./\ = ( meet ` K )
cdlemk3.a
|- A = ( Atoms ` K )
cdlemk3.h
|- H = ( LHyp ` K )
cdlemk3.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk3.r
|- R = ( ( trL ` K ) ` W )
cdlemk3.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk3.u1
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) )
Assertion cdlemk24-3
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) )

Proof

Step Hyp Ref Expression
1 cdlemk3.b
 |-  B = ( Base ` K )
2 cdlemk3.l
 |-  .<_ = ( le ` K )
3 cdlemk3.j
 |-  .\/ = ( join ` K )
4 cdlemk3.m
 |-  ./\ = ( meet ` K )
5 cdlemk3.a
 |-  A = ( Atoms ` K )
6 cdlemk3.h
 |-  H = ( LHyp ` K )
7 cdlemk3.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk3.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk3.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk3.u1
 |-  Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) )
11 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) )
12 simp32l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` G ) =/= ( R ` D ) )
13 simp331
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` x ) =/= ( R ` D ) )
14 simp32r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` C ) = ( R ` D ) )
15 13 14 neeqtrrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( R ` x ) =/= ( R ` C ) )
16 12 15 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( R ` G ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` C ) ) )
17 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) )
18 11 16 17 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` C ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) )
19 1 2 3 4 5 6 7 8 9 10 cdlemk23-3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` C ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) )
20 18 19 syld3an3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) = ( R ` D ) ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) )