Metamath Proof Explorer


Theorem cdlemk24-3

Description: Part of proof of Lemma K of Crawley p. 118. Eliminate the ( Rx ) =/= ( RC ) requirement from cdlemk23-3 using ( RC ) = ( RD ) . (Contributed by NM, 7-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk24-3 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x D Y G P = C Y G P

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 simp31 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R G R C R C R F R D R F
12 simp32l K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R G R D
13 simp331 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R x R D
14 simp32r K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R C = R D
15 13 14 neeqtrrd K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R x R C
16 12 15 jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R G R D R x R C
17 simp33 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R x R D R x R F R G R x
18 11 16 17 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x
19 1 2 3 4 5 6 7 8 9 10 cdlemk23-3 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x D Y G P = C Y G P
20 18 19 syld3an3 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x D Y G P = C Y G P