Metamath Proof Explorer


Theorem cdlemk25-3

Description: Part of proof of Lemma K of Crawley p. 118. Eliminate the ( RC ) = ( RD ) requirement from cdlemk24-3 . (Contributed by NM, 7-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk25-3 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x D Y G P = C Y G P

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 simpl1 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D K HL W H F T D T N T G T C T x T
12 simpl2 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B
13 simpl31 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D R G R C R C R F R D R F
14 simpl32 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D R G R D
15 simpr K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D R C = R D
16 14 15 jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D R G R D R C = R D
17 simpl33 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D R x R D R x R F R G R x
18 1 2 3 4 5 6 7 8 9 10 cdlemk24-3 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R C = R D R x R D R x R F R G R x D Y G P = C Y G P
19 11 12 13 16 17 18 syl113anc K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C = R D D Y G P = C Y G P
20 simp11 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x K HL W H
21 simp121 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x F T
22 simp122 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x D T
23 20 21 22 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x K HL W H F T D T
24 23 adantr K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D K HL W H F T D T
25 simp123 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x N T
26 simp131 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x G T
27 simp132 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x C T
28 25 26 27 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x N T G T C T
29 simp21 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x P A ¬ P ˙ W
30 simp221 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R F = R N
31 28 29 30 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x N T G T C T P A ¬ P ˙ W R F = R N
32 31 adantr K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D N T G T C T P A ¬ P ˙ W R F = R N
33 simp222 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x F I B
34 simp223 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x D I B
35 simp231 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x G I B
36 33 34 35 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x F I B D I B G I B
37 36 adantr K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D F I B D I B G I B
38 simp232 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x C I B
39 simp311 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R G R C
40 simp312 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R F
41 38 39 40 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x C I B R G R C R C R F
42 41 adantr K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D C I B R G R C R C R F
43 simp313 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R D R F
44 43 adantr K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D R D R F
45 simpl32 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D R G R D
46 simpr K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D R C R D
47 44 45 46 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D R D R F R G R D R C R D
48 1 2 3 4 5 6 7 8 9 10 cdlemk22-3 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D D Y G P = C Y G P
49 24 32 37 42 47 48 syl113anc K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x R C R D D Y G P = C Y G P
50 19 49 pm2.61dane K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R D R x R F R G R x D Y G P = C Y G P