Metamath Proof Explorer


Theorem cdlemk22-3

Description: Part of proof of Lemma K of Crawley p. 118. Lines 26-27, p. 119 for i=1 and j=2. (Contributed by NM, 7-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk22-3 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D D Y G P = C Y G P

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 eqid S C = S C
12 eqid e T ι j T | j P = P ˙ R e ˙ S C P ˙ R e C -1 = e T ι j T | j P = P ˙ R e ˙ S C P ˙ R e C -1
13 eqid S D = S D
14 eqid e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1
15 1 2 3 4 5 6 7 8 9 11 12 13 14 cdlemk22 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 G P = e T ι j T | j P = P ˙ R e ˙ S C P ˙ R e C -1 G P
16 simp13 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D D T
17 simp212 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D G T
18 1 2 3 4 5 6 7 8 9 10 13 14 cdlemkuu D T G T D Y G = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 G
19 16 17 18 syl2anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D D Y G = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 G
20 19 fveq1d K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D D Y G P = e T ι j T | j P = P ˙ R e ˙ S D P ˙ R e D -1 G P
21 simp213 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D C T
22 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkuu C T G T C Y G = e T ι j T | j P = P ˙ R e ˙ S C P ˙ R e C -1 G
23 21 17 22 syl2anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D C Y G = e T ι j T | j P = P ˙ R e ˙ S C P ˙ R e C -1 G
24 23 fveq1d K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D C Y G P = e T ι j T | j P = P ˙ R e ˙ S C P ˙ R e C -1 G P
25 15 20 24 3eqtr4d K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D D Y G P = C Y G P