Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|
2 |
|
cdlemk3.l |
|
3 |
|
cdlemk3.j |
|
4 |
|
cdlemk3.m |
|
5 |
|
cdlemk3.a |
|
6 |
|
cdlemk3.h |
|
7 |
|
cdlemk3.t |
|
8 |
|
cdlemk3.r |
|
9 |
|
cdlemk3.s |
|
10 |
|
cdlemk3.u1 |
|
11 |
|
cdlemk3.o2 |
|
12 |
|
cdlemk3.u2 |
|
13 |
|
fveq2 |
|
14 |
13 11
|
eqtr4di |
|
15 |
14
|
fveq1d |
|
16 |
|
cnveq |
|
17 |
16
|
coeq2d |
|
18 |
17
|
fveq2d |
|
19 |
15 18
|
oveq12d |
|
20 |
19
|
oveq2d |
|
21 |
20
|
eqeq2d |
|
22 |
21
|
riotabidv |
|
23 |
|
fveq2 |
|
24 |
23
|
oveq2d |
|
25 |
|
coeq1 |
|
26 |
25
|
fveq2d |
|
27 |
26
|
oveq2d |
|
28 |
24 27
|
oveq12d |
|
29 |
28
|
eqeq2d |
|
30 |
29
|
riotabidv |
|
31 |
|
riotaex |
|
32 |
22 30 10 31
|
ovmpo |
|
33 |
1 2 3 5 6 7 8 4 12
|
cdlemksv |
|
34 |
33
|
adantl |
|
35 |
32 34
|
eqtr4d |
|