Metamath Proof Explorer


Theorem cdlemk23-3

Description: Part of proof of Lemma K of Crawley p. 118. Eliminate the ( RC ) =/= ( RD ) requirement from cdlemk22-3 . (Contributed by NM, 7-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk23-3 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x D Y G P = C Y G P

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 simp11 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x K HL W H
12 simp121 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x F T
13 simp122 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x D T
14 simp123 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x N T
15 simp131 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x G T
16 simp133 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x x T
17 14 15 16 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x N T G T x T
18 simp21 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x P A ¬ P ˙ W
19 simp221 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R F = R N
20 simp222 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x F I B
21 simp223 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x D I B
22 simp231 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x G I B
23 20 21 22 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x F I B D I B G I B
24 simp233 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x x I B
25 simp333 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R G R x
26 simp332 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R x R F
27 24 25 26 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x x I B R G R x R x R F
28 simp313 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R D R F
29 simp32l K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R G R D
30 simp331 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R x R D
31 28 29 30 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R D R F R G R D R x R D
32 1 2 3 4 5 6 7 8 9 10 cdlemk22-3 K HL W H F T D T N T G T x T P A ¬ P ˙ W R F = R N F I B D I B G I B x I B R G R x R x R F R D R F R G R D R x R D D Y G P = x Y G P
33 11 12 13 17 18 19 23 27 31 32 syl333anc K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x D Y G P = x Y G P
34 simp132 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x C T
35 simp232 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x C I B
36 20 35 22 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x F I B C I B G I B
37 simp312 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R C R F
38 simp311 K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R G R C
39 simp32r K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R x R C
40 37 38 39 3jca K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x R C R F R G R C R x R C
41 1 2 3 4 5 6 7 8 9 10 cdlemk22-3 K HL W H F T C T N T G T x T P A ¬ P ˙ W R F = R N F I B C I B G I B x I B R G R x R x R F R C R F R G R C R x R C C Y G P = x Y G P
42 11 12 34 17 18 19 36 27 40 41 syl333anc K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x C Y G P = x Y G P
43 33 42 eqtr4d K HL W H F T D T N T G T C T x T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B x I B R G R C R C R F R D R F R G R D R x R C R x R D R x R F R G R x D Y G P = C Y G P