Metamath Proof Explorer


Theorem cdlemk22

Description: Part of proof of Lemma K of Crawley p. 118. Lines 26-27, p. 119 for i=1 and j=2. (Contributed by NM, 5-Jul-2013)

Ref Expression
Hypotheses cdlemk2.b B = Base K
cdlemk2.l ˙ = K
cdlemk2.j ˙ = join K
cdlemk2.m ˙ = meet K
cdlemk2.a A = Atoms K
cdlemk2.h H = LHyp K
cdlemk2.t T = LTrn K W
cdlemk2.r R = trL K W
cdlemk2.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk2.q Q = S C
cdlemk2.v V = d T ι k T | k P = P ˙ R d ˙ Q P ˙ R d C -1
cdlemk2a.o O = S D
cdlemk2.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
Assertion cdlemk22 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D U G P = V G P

Proof

Step Hyp Ref Expression
1 cdlemk2.b B = Base K
2 cdlemk2.l ˙ = K
3 cdlemk2.j ˙ = join K
4 cdlemk2.m ˙ = meet K
5 cdlemk2.a A = Atoms K
6 cdlemk2.h H = LHyp K
7 cdlemk2.t T = LTrn K W
8 cdlemk2.r R = trL K W
9 cdlemk2.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk2.q Q = S C
11 cdlemk2.v V = d T ι k T | k P = P ˙ R d ˙ Q P ˙ R d C -1
12 cdlemk2a.o O = S D
13 cdlemk2.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
14 simp11 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D K HL W H
15 simp212 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D G T
16 simp22 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D P A ¬ P ˙ W
17 2 3 5 6 7 8 trljat1 K HL W H G T P A ¬ P ˙ W P ˙ R G = P ˙ G P
18 14 15 16 17 syl3anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D P ˙ R G = P ˙ G P
19 simp1 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D K HL W H F T D T
20 simp211 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D N T
21 simp213 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D C T
22 20 21 jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D N T C T
23 simp23 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R F = R N
24 simp311 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D F I B
25 simp312 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D D I B
26 simp321 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D C I B
27 24 25 26 3jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D F I B D I B C I B
28 simp331 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R D R F
29 simp323 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R C R F
30 simp333 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R C R D
31 28 29 30 3jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R D R F R C R F R C R D
32 1 2 3 4 5 6 7 8 9 12 13 10 cdlemk20 K HL W H F T D T N T C T P A ¬ P ˙ W R F = R N F I B D I B C I B R D R F R C R F R C R D U C P = Q P
33 19 22 16 23 27 31 32 syl132anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D U C P = Q P
34 33 eqcomd K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D Q P = U C P
35 6 7 8 trlcocnv K HL W H G T C T R G C -1 = R C G -1
36 14 15 21 35 syl3anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R G C -1 = R C G -1
37 34 36 oveq12d K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D Q P ˙ R G C -1 = U C P ˙ R C G -1
38 18 37 oveq12d K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D P ˙ R G ˙ Q P ˙ R G C -1 = P ˙ G P ˙ U C P ˙ R C G -1
39 simp12 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D F T
40 simp322 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R G R C
41 40 necomd K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R C R G
42 29 41 jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R C R F R C R G
43 simp313 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D G I B
44 24 43 26 3jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D F I B G I B C I B
45 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2-2 K HL W H R F = R N G T F T C T N T R C R F R C R G F I B G I B C I B P A ¬ P ˙ W V G P = P ˙ R G ˙ Q P ˙ R G C -1
46 14 23 15 39 21 20 42 44 16 45 syl333anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D V G P = P ˙ R G ˙ Q P ˙ R G C -1
47 simp31 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D F I B D I B G I B
48 26 40 jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D C I B R G R C
49 simp33 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D R D R F R G R D R C R D
50 47 48 49 3jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D F I B D I B G I B C I B R G R C R D R F R G R D R C R D
51 1 2 3 4 5 6 7 8 9 12 13 cdlemk12u K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R D R F R G R D R C R D U G P = P ˙ G P ˙ U C P ˙ R C G -1
52 50 51 syld3an3 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D U G P = P ˙ G P ˙ U C P ˙ R C G -1
53 38 46 52 3eqtr4rd K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R D U G P = V G P