Metamath Proof Explorer


Theorem cdlemk22

Description: Part of proof of Lemma K of Crawley p. 118. Lines 26-27, p. 119 for i=1 and j=2. (Contributed by NM, 5-Jul-2013)

Ref Expression
Hypotheses cdlemk2.b
|- B = ( Base ` K )
cdlemk2.l
|- .<_ = ( le ` K )
cdlemk2.j
|- .\/ = ( join ` K )
cdlemk2.m
|- ./\ = ( meet ` K )
cdlemk2.a
|- A = ( Atoms ` K )
cdlemk2.h
|- H = ( LHyp ` K )
cdlemk2.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk2.r
|- R = ( ( trL ` K ) ` W )
cdlemk2.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk2.q
|- Q = ( S ` C )
cdlemk2.v
|- V = ( d e. T |-> ( iota_ k e. T ( k ` P ) = ( ( P .\/ ( R ` d ) ) ./\ ( ( Q ` P ) .\/ ( R ` ( d o. `' C ) ) ) ) ) )
cdlemk2a.o
|- O = ( S ` D )
cdlemk2.u
|- U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) )
Assertion cdlemk22
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) = ( ( V ` G ) ` P ) )

Proof

Step Hyp Ref Expression
1 cdlemk2.b
 |-  B = ( Base ` K )
2 cdlemk2.l
 |-  .<_ = ( le ` K )
3 cdlemk2.j
 |-  .\/ = ( join ` K )
4 cdlemk2.m
 |-  ./\ = ( meet ` K )
5 cdlemk2.a
 |-  A = ( Atoms ` K )
6 cdlemk2.h
 |-  H = ( LHyp ` K )
7 cdlemk2.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk2.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk2.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk2.q
 |-  Q = ( S ` C )
11 cdlemk2.v
 |-  V = ( d e. T |-> ( iota_ k e. T ( k ` P ) = ( ( P .\/ ( R ` d ) ) ./\ ( ( Q ` P ) .\/ ( R ` ( d o. `' C ) ) ) ) ) )
12 cdlemk2a.o
 |-  O = ( S ` D )
13 cdlemk2.u
 |-  U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) )
14 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( K e. HL /\ W e. H ) )
15 simp212
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> G e. T )
16 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
17 2 3 5 6 7 8 trljat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) )
18 14 15 16 17 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) )
19 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) )
20 simp211
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> N e. T )
21 simp213
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> C e. T )
22 20 21 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( N e. T /\ C e. T ) )
23 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` F ) = ( R ` N ) )
24 simp311
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> F =/= ( _I |` B ) )
25 simp312
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> D =/= ( _I |` B ) )
26 simp321
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> C =/= ( _I |` B ) )
27 24 25 26 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) )
28 simp331
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` F ) )
29 simp323
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` C ) =/= ( R ` F ) )
30 simp333
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` C ) =/= ( R ` D ) )
31 28 29 30 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) )
32 1 2 3 4 5 6 7 8 9 12 13 10 cdlemk20
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` C ) ` P ) = ( Q ` P ) )
33 19 22 16 23 27 31 32 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` C ) ` P ) = ( Q ` P ) )
34 33 eqcomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( Q ` P ) = ( ( U ` C ) ` P ) )
35 6 7 8 trlcocnv
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ C e. T ) -> ( R ` ( G o. `' C ) ) = ( R ` ( C o. `' G ) ) )
36 14 15 21 35 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` ( G o. `' C ) ) = ( R ` ( C o. `' G ) ) )
37 34 36 oveq12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( Q ` P ) .\/ ( R ` ( G o. `' C ) ) ) = ( ( ( U ` C ) ` P ) .\/ ( R ` ( C o. `' G ) ) ) )
38 18 37 oveq12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( Q ` P ) .\/ ( R ` ( G o. `' C ) ) ) ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( U ` C ) ` P ) .\/ ( R ` ( C o. `' G ) ) ) ) )
39 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> F e. T )
40 simp322
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` C ) )
41 40 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( R ` C ) =/= ( R ` G ) )
42 29 41 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` G ) ) )
43 simp313
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> G =/= ( _I |` B ) )
44 24 43 26 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) )
45 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2-2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ C e. T /\ N e. T ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` C ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( V ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( Q ` P ) .\/ ( R ` ( G o. `' C ) ) ) ) )
46 14 23 15 39 21 20 42 44 16 45 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( V ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( Q ` P ) .\/ ( R ` ( G o. `' C ) ) ) ) )
47 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) )
48 26 40 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) ) )
49 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) )
50 47 48 49 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) )
51 1 2 3 4 5 6 7 8 9 12 13 cdlemk12u
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( U ` C ) ` P ) .\/ ( R ` ( C o. `' G ) ) ) ) )
52 50 51 syld3an3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( U ` C ) ` P ) .\/ ( R ` ( C o. `' G ) ) ) ) )
53 38 46 52 3eqtr4rd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ C e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( C =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` C ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) = ( ( V ` G ) ` P ) )