Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk3.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk3.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk3.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk3.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk3.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk3.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk3.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk3.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
simp1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T ) |
12 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> b e. T ) |
13 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> N e. T ) |
14 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
15 |
|
simp1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) = ( R ` N ) ) |
16 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F =/= ( _I |` B ) ) |
17 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> b =/= ( _I |` B ) ) |
18 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` b ) =/= ( R ` F ) ) |
19 |
1 2 3 5 6 7 8 4 9
|
cdlemksv2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ b e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) -> ( ( S ` b ) ` P ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) ) |
20 |
10 11 12 13 14 15 16 17 18 19
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( S ` b ) ` P ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) ) |