Metamath Proof Explorer


Theorem cdlemk30

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 17-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b
|- B = ( Base ` K )
cdlemk3.l
|- .<_ = ( le ` K )
cdlemk3.j
|- .\/ = ( join ` K )
cdlemk3.m
|- ./\ = ( meet ` K )
cdlemk3.a
|- A = ( Atoms ` K )
cdlemk3.h
|- H = ( LHyp ` K )
cdlemk3.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk3.r
|- R = ( ( trL ` K ) ` W )
cdlemk3.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
Assertion cdlemk30
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( S ` b ) ` P ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk3.b
 |-  B = ( Base ` K )
2 cdlemk3.l
 |-  .<_ = ( le ` K )
3 cdlemk3.j
 |-  .\/ = ( join ` K )
4 cdlemk3.m
 |-  ./\ = ( meet ` K )
5 cdlemk3.a
 |-  A = ( Atoms ` K )
6 cdlemk3.h
 |-  H = ( LHyp ` K )
7 cdlemk3.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk3.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk3.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 simp1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( K e. HL /\ W e. H ) )
11 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T )
12 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> b e. T )
13 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> N e. T )
14 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) )
15 simp1r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) = ( R ` N ) )
16 simp32l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F =/= ( _I |` B ) )
17 simp32r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> b =/= ( _I |` B ) )
18 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` b ) =/= ( R ` F ) )
19 1 2 3 5 6 7 8 4 9 cdlemksv2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ b e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) ) ) -> ( ( S ` b ) ` P ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) )
20 10 11 12 13 14 15 16 17 18 19 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( R ` b ) =/= ( R ` F ) /\ ( F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( S ` b ) ` P ) = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) )