Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk1.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk1.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk1.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk1.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk1.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk1.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk1.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk1.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
|- O = ( S ` D ) |
11 |
|
cdlemk1.u |
|- U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) |
12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> K e. HL ) |
13 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> P e. A ) |
14 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
15 |
|
simp212 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> G e. T ) |
16 |
2 5 6 7
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
17 |
14 15 13 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( G ` P ) e. A ) |
18 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` F ) = ( R ` N ) ) |
19 |
|
simp213 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> X e. T ) |
20 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> F e. T ) |
21 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D e. T ) |
22 |
|
simp211 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> N e. T ) |
23 |
|
simp331 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` F ) ) |
24 |
|
simp333 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` X ) =/= ( R ` D ) ) |
25 |
24
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` X ) ) |
26 |
23 25
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` X ) ) ) |
27 |
|
simp311 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> F =/= ( _I |` B ) ) |
28 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> X =/= ( _I |` B ) ) |
29 |
|
simp312 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> D =/= ( _I |` B ) ) |
30 |
27 28 29
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) ) |
31 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
32 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ X e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` X ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` X ) ` P ) e. A ) |
33 |
14 18 19 20 21 22 26 30 31 32
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` X ) ` P ) e. A ) |
34 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` X ) ) |
35 |
34
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` X ) =/= ( R ` G ) ) |
36 |
5 6 7 8
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. T /\ G e. T ) /\ ( R ` X ) =/= ( R ` G ) ) -> ( R ` ( X o. `' G ) ) e. A ) |
37 |
14 19 15 35 36
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( X o. `' G ) ) e. A ) |
38 |
|
simp332 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` D ) ) |
39 |
38
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` D ) =/= ( R ` G ) ) |
40 |
23 39
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) ) |
41 |
|
simp313 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> G =/= ( _I |` B ) ) |
42 |
27 41 29
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuat |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` G ) ` P ) e. A ) |
44 |
14 18 15 20 21 22 40 42 31 43
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) e. A ) |
45 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuv2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( U ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) ) |
46 |
14 18 15 20 21 22 40 42 31 45
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) ) |
47 |
12
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> K e. Lat ) |
48 |
1 5 6 7 8
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ G =/= ( _I |` B ) ) -> ( R ` G ) e. A ) |
49 |
14 15 41 48
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) e. A ) |
50 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) -> ( P .\/ ( R ` G ) ) e. B ) |
51 |
12 13 49 50
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( P .\/ ( R ` G ) ) e. B ) |
52 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) ) |
53 |
22 31 18
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
54 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkoatnle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) e. A /\ -. ( O ` P ) .<_ W ) ) |
55 |
54
|
simpld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) e. A ) |
56 |
52 53 27 29 23 55
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( O ` P ) e. A ) |
57 |
5 6 7 8
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ D e. T ) /\ ( R ` G ) =/= ( R ` D ) ) -> ( R ` ( G o. `' D ) ) e. A ) |
58 |
14 15 21 38 57
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( G o. `' D ) ) e. A ) |
59 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ ( O ` P ) e. A /\ ( R ` ( G o. `' D ) ) e. A ) -> ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) e. B ) |
60 |
12 56 58 59
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) e. B ) |
61 |
1 2 4
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ ( R ` G ) ) e. B /\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) e. B ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( P .\/ ( R ` G ) ) ) |
62 |
47 51 60 61
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( P .\/ ( R ` G ) ) ) |
63 |
46 62
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( P .\/ ( R ` G ) ) ) |
64 |
2 3 5 6 7 8
|
trljat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) ) |
65 |
14 15 31 64
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( P .\/ ( R ` G ) ) = ( P .\/ ( G ` P ) ) ) |
66 |
63 65
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( P .\/ ( G ` P ) ) ) |
67 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
68 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) ) |
69 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) |
70 |
|
eqid |
|- ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) ) = ( ( ( G ` P ) .\/ ( X ` P ) ) ./\ ( ( R ` ( G o. `' D ) ) .\/ ( R ` ( X o. `' D ) ) ) ) |
71 |
1 2 3 4 5 6 7 8 9 10 11 70
|
cdlemk11u |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ X =/= ( _I |` B ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
72 |
52 67 68 28 69 71
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
73 |
2 3 5
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) ) |
74 |
12 13 49 73
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) ) |
75 |
74 65
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) .<_ ( P .\/ ( G ` P ) ) ) |
76 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkuel |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ X e. T ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( ( ( R ` D ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` X ) ) /\ ( F =/= ( _I |` B ) /\ X =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( U ` X ) e. T ) |
77 |
14 18 19 20 21 22 26 30 31 76
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( U ` X ) e. T ) |
78 |
2 5 6 7
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U ` X ) e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( U ` X ) ` P ) e. A /\ -. ( ( U ` X ) ` P ) .<_ W ) ) |
79 |
14 77 31 78
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( ( U ` X ) ` P ) e. A /\ -. ( ( U ` X ) ` P ) .<_ W ) ) |
80 |
6 7
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> `' G e. T ) |
81 |
14 15 80
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> `' G e. T ) |
82 |
6 7 8
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` `' G ) = ( R ` G ) ) |
83 |
14 15 82
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` `' G ) = ( R ` G ) ) |
84 |
83 34
|
eqnetrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` `' G ) =/= ( R ` X ) ) |
85 |
1 6 7 8
|
trlcone |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' G e. T /\ X e. T ) /\ ( ( R ` `' G ) =/= ( R ` X ) /\ X =/= ( _I |` B ) ) ) -> ( R ` `' G ) =/= ( R ` ( `' G o. X ) ) ) |
86 |
14 81 19 84 28 85
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` `' G ) =/= ( R ` ( `' G o. X ) ) ) |
87 |
86
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( `' G o. X ) ) =/= ( R ` `' G ) ) |
88 |
6 7
|
ltrncom |
|- ( ( ( K e. HL /\ W e. H ) /\ `' G e. T /\ X e. T ) -> ( `' G o. X ) = ( X o. `' G ) ) |
89 |
14 81 19 88
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( `' G o. X ) = ( X o. `' G ) ) |
90 |
89
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( `' G o. X ) ) = ( R ` ( X o. `' G ) ) ) |
91 |
87 90 83
|
3netr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( X o. `' G ) ) =/= ( R ` G ) ) |
92 |
6 7
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. T /\ `' G e. T ) -> ( X o. `' G ) e. T ) |
93 |
14 19 81 92
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( X o. `' G ) e. T ) |
94 |
2 6 7 8
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X o. `' G ) e. T ) -> ( R ` ( X o. `' G ) ) .<_ W ) |
95 |
14 93 94
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` ( X o. `' G ) ) .<_ W ) |
96 |
2 6 7 8
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) .<_ W ) |
97 |
14 15 96
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( R ` G ) .<_ W ) |
98 |
2 3 5 6
|
lhp2atnle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( ( U ` X ) ` P ) e. A /\ -. ( ( U ` X ) ` P ) .<_ W ) /\ ( R ` ( X o. `' G ) ) =/= ( R ` G ) ) /\ ( ( R ` ( X o. `' G ) ) e. A /\ ( R ` ( X o. `' G ) ) .<_ W ) /\ ( ( R ` G ) e. A /\ ( R ` G ) .<_ W ) ) -> -. ( R ` G ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
99 |
14 79 91 37 95 49 97 98
|
syl322anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> -. ( R ` G ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
100 |
|
nbrne1 |
|- ( ( ( R ` G ) .<_ ( P .\/ ( G ` P ) ) /\ -. ( R ` G ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) -> ( P .\/ ( G ` P ) ) =/= ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
101 |
75 99 100
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( P .\/ ( G ` P ) ) =/= ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) |
102 |
2 3 4 5
|
2atm |
|- ( ( ( K e. HL /\ P e. A /\ ( G ` P ) e. A ) /\ ( ( ( U ` X ) ` P ) e. A /\ ( R ` ( X o. `' G ) ) e. A /\ ( ( U ` G ) ` P ) e. A ) /\ ( ( ( U ` G ) ` P ) .<_ ( P .\/ ( G ` P ) ) /\ ( ( U ` G ) ` P ) .<_ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) /\ ( P .\/ ( G ` P ) ) =/= ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) -> ( ( U ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) |
103 |
12 13 17 33 37 44 66 72 101 102
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( ( N e. T /\ G e. T /\ X e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( X =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` X ) ) /\ ( ( R ` D ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` D ) /\ ( R ` X ) =/= ( R ` D ) ) ) ) -> ( ( U ` G ) ` P ) = ( ( P .\/ ( G ` P ) ) ./\ ( ( ( U ` X ) ` P ) .\/ ( R ` ( X o. `' G ) ) ) ) ) |