Metamath Proof Explorer


Theorem cdlemk12u

Description: Part of proof of Lemma K of Crawley p. 118. Line 18, p. 119, showing Eq. 4 (line 10, p. 119) for the sigma_1 ( U ) case. (Contributed by NM, 4-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
cdlemk1.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
Assertion cdlemk12u K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U G P = P ˙ G P ˙ U X P ˙ R X G -1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 cdlemk1.u U = e T ι j T | j P = P ˙ R e ˙ O P ˙ R e D -1
12 simp11l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D K HL
13 simp22l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D P A
14 simp11 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D K HL W H
15 simp212 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D G T
16 2 5 6 7 ltrnat K HL W H G T P A G P A
17 14 15 13 16 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D G P A
18 simp23 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R F = R N
19 simp213 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D X T
20 simp12 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D F T
21 simp13 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D D T
22 simp211 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D N T
23 simp331 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R D R F
24 simp333 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R X R D
25 24 necomd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R D R X
26 23 25 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R D R F R D R X
27 simp311 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D F I B
28 simp32l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D X I B
29 simp312 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D D I B
30 27 28 29 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D F I B X I B D I B
31 simp22 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D P A ¬ P ˙ W
32 1 2 3 4 5 6 7 8 9 10 11 cdlemkuat K HL W H R F = R N X T F T D T N T R D R F R D R X F I B X I B D I B P A ¬ P ˙ W U X P A
33 14 18 19 20 21 22 26 30 31 32 syl333anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U X P A
34 simp32r K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G R X
35 34 necomd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R X R G
36 5 6 7 8 trlcocnvat K HL W H X T G T R X R G R X G -1 A
37 14 19 15 35 36 syl121anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R X G -1 A
38 simp332 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G R D
39 38 necomd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R D R G
40 23 39 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R D R F R D R G
41 simp313 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D G I B
42 27 41 29 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D F I B G I B D I B
43 1 2 3 4 5 6 7 8 9 10 11 cdlemkuat K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G P A
44 14 18 15 20 21 22 40 42 31 43 syl333anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U G P A
45 1 2 3 4 5 6 7 8 9 10 11 cdlemkuv2 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W U G P = P ˙ R G ˙ O P ˙ R G D -1
46 14 18 15 20 21 22 40 42 31 45 syl333anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U G P = P ˙ R G ˙ O P ˙ R G D -1
47 12 hllatd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D K Lat
48 1 5 6 7 8 trlnidat K HL W H G T G I B R G A
49 14 15 41 48 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G A
50 1 3 5 hlatjcl K HL P A R G A P ˙ R G B
51 12 13 49 50 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D P ˙ R G B
52 simp1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D K HL W H F T D T
53 22 31 18 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D N T P A ¬ P ˙ W R F = R N
54 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W
55 54 simpld K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A
56 52 53 27 29 23 55 syl113anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D O P A
57 5 6 7 8 trlcocnvat K HL W H G T D T R G R D R G D -1 A
58 14 15 21 38 57 syl121anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G D -1 A
59 1 3 5 hlatjcl K HL O P A R G D -1 A O P ˙ R G D -1 B
60 12 56 58 59 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D O P ˙ R G D -1 B
61 1 2 4 latmle1 K Lat P ˙ R G B O P ˙ R G D -1 B P ˙ R G ˙ O P ˙ R G D -1 ˙ P ˙ R G
62 47 51 60 61 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D P ˙ R G ˙ O P ˙ R G D -1 ˙ P ˙ R G
63 46 62 eqbrtrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U G P ˙ P ˙ R G
64 2 3 5 6 7 8 trljat1 K HL W H G T P A ¬ P ˙ W P ˙ R G = P ˙ G P
65 14 15 31 64 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D P ˙ R G = P ˙ G P
66 63 65 breqtrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U G P ˙ P ˙ G P
67 simp2 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D N T G T X T P A ¬ P ˙ W R F = R N
68 simp31 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D F I B D I B G I B
69 simp33 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R D R F R G R D R X R D
70 eqid G P ˙ X P ˙ R G D -1 ˙ R X D -1 = G P ˙ X P ˙ R G D -1 ˙ R X D -1
71 1 2 3 4 5 6 7 8 9 10 11 70 cdlemk11u K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R D R F R G R D R X R D U G P ˙ U X P ˙ R X G -1
72 52 67 68 28 69 71 syl113anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U G P ˙ U X P ˙ R X G -1
73 2 3 5 hlatlej2 K HL P A R G A R G ˙ P ˙ R G
74 12 13 49 73 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G ˙ P ˙ R G
75 74 65 breqtrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G ˙ P ˙ G P
76 1 2 3 4 5 6 7 8 9 10 11 cdlemkuel K HL W H R F = R N X T F T D T N T R D R F R D R X F I B X I B D I B P A ¬ P ˙ W U X T
77 14 18 19 20 21 22 26 30 31 76 syl333anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U X T
78 2 5 6 7 ltrnel K HL W H U X T P A ¬ P ˙ W U X P A ¬ U X P ˙ W
79 14 77 31 78 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U X P A ¬ U X P ˙ W
80 6 7 ltrncnv K HL W H G T G -1 T
81 14 15 80 syl2anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D G -1 T
82 6 7 8 trlcnv K HL W H G T R G -1 = R G
83 14 15 82 syl2anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G -1 = R G
84 83 34 eqnetrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G -1 R X
85 1 6 7 8 trlcone K HL W H G -1 T X T R G -1 R X X I B R G -1 R G -1 X
86 14 81 19 84 28 85 syl122anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G -1 R G -1 X
87 86 necomd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G -1 X R G -1
88 6 7 ltrncom K HL W H G -1 T X T G -1 X = X G -1
89 14 81 19 88 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D G -1 X = X G -1
90 89 fveq2d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G -1 X = R X G -1
91 87 90 83 3netr3d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R X G -1 R G
92 6 7 ltrnco K HL W H X T G -1 T X G -1 T
93 14 19 81 92 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D X G -1 T
94 2 6 7 8 trlle K HL W H X G -1 T R X G -1 ˙ W
95 14 93 94 syl2anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R X G -1 ˙ W
96 2 6 7 8 trlle K HL W H G T R G ˙ W
97 14 15 96 syl2anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D R G ˙ W
98 2 3 5 6 lhp2atnle K HL W H U X P A ¬ U X P ˙ W R X G -1 R G R X G -1 A R X G -1 ˙ W R G A R G ˙ W ¬ R G ˙ U X P ˙ R X G -1
99 14 79 91 37 95 49 97 98 syl322anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D ¬ R G ˙ U X P ˙ R X G -1
100 nbrne1 R G ˙ P ˙ G P ¬ R G ˙ U X P ˙ R X G -1 P ˙ G P U X P ˙ R X G -1
101 75 99 100 syl2anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D P ˙ G P U X P ˙ R X G -1
102 2 3 4 5 2atm K HL P A G P A U X P A R X G -1 A U G P A U G P ˙ P ˙ G P U G P ˙ U X P ˙ R X G -1 P ˙ G P U X P ˙ R X G -1 U G P = P ˙ G P ˙ U X P ˙ R X G -1
103 12 13 17 33 37 44 66 72 101 102 syl333anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B X I B R G R X R D R F R G R D R X R D U G P = P ˙ G P ˙ U X P ˙ R X G -1